Longitudinal Polarization in Novosibirsk c-tau factory

I.A.Koop, A.V.Bogomyagkov and A.V..Otboev

BINP, 630090 Novosibirsk, Russia

Joint Workshop on Super C-Tau Factory September 23-26, 2019 RAS, Moscow, Russia

Outline

- C-tau complex with the longitudinally polarized electrons.
- Siberian Snakes Concept.
- Radiative self-polarization processes. Formulae Derbenev - Kondratenko.
- Few options with different number of snakes.
- Results and conclusion.

Novosibirsk c-tau complex layout

The Novosibirsk c-tau factory parameters

Beam Energy	1.0 – 3.0	GeV
Circumference	522	m
Crossing angle	60	mr
Emittances, $\varepsilon_x / \varepsilon_y$	4.8 / 0.025	nm
Number of bunches	270	
Number of particles/bunch	9·10 ¹⁰	
Total current	2.2	A
Beta function, β_x / β_y	50 / 0.5	mm
Sigma, σ _x / σ _y	15/0.1 (3 GeV)	mkm
Luminosity	0.9 - 2.8 · 10 ³⁵	cm ⁻² s ⁻¹

Polarization scheme with 3 snakes (arc=120^o +2 damping wigglers in the arc's middle)

Spin directions in the Novosibirsk Super c-tau factory

Transparent spin rotator (partial snake)

I.Koop, Long. Polarization, Sept 26, 2019

Equivalents of 180⁰ spin rotator, drifts 1, 2, 3

Floquet functions of snakes №1, №2 and №3, solenoids off

I.Koop, Long. Polarization, Sept 26, 2019

Depolarization time in presence of snakes

$$\tau_{p}^{-1} = \frac{5\sqrt{3}}{8} \lambda_{e} r_{e} c \gamma^{5} \left\langle \left| K^{3} \right| \left(1 - \frac{2}{9} (\vec{n} \vec{v})^{2} + \frac{11}{18} \vec{d}^{2} \right) \right\rangle$$

Here $K = \rho^{-1}$, $|\vec{v}| = 1$

$$\vec{d} = \gamma \frac{\partial \vec{n}}{\partial \gamma}$$
 is
the spin – orbit
coupling vector

Spin transparency cancels the betatron contribution to d: $\vec{d} = \vec{d}_{\gamma} + \breve{A}_{\beta}$, then:

$$\vec{d}^2(0) = \frac{\pi^2}{4} \sin^2 \frac{\pi \nu}{n_{snk}}$$
$$\left\langle \vec{d}^2 \right\rangle = \vec{d}^2(0) + \frac{\pi^2}{3} \frac{\nu^2}{n_{snk}^2}$$

Placing damping wigglers in minimum of |d| weakens depolarizing effects of SR

Self-polarization in presence of snakes

$$\varsigma_{\rm p} = \frac{8}{5\sqrt{3}} \cdot \frac{(\pi/2)\sin(\pi\nu/n_{\rm snk})\left\langle K_{\rm B}^{3} + K_{\rm W}^{3} \right\rangle}{\left\langle K_{\rm B}^{3} + \left| K_{\rm W} \right|^{3} \right\rangle 7/9 + \left[\left\langle K_{\rm B}^{3} d^{2}(\theta) \right\rangle + \left| K_{\rm W} \right|^{3} d^{2}(0) \right] 11/18}$$

 $K_{\rm W} \equiv \rho_{\rm W}^{-1}$

Symmetric wigglers do not contribute to the nominator, but asymmetric will do. That can be used to polarize the positron beam.

$$\vec{d}^2(0) = \frac{\pi^2}{4} \sin^2 \frac{\pi \nu}{n_{snk}}$$
$$\left\langle \vec{d}^2 \right\rangle = \vec{d}^2(0) + \frac{\pi^2}{3} \frac{\nu^2}{n_{snk}^2}$$

Module of Spin-Orbital Function, 3 Snakes

Radiative polarization relaxation time, τ_{rad} cτ_07_2019, 3 snakes

Polarization degree overview

ct_07_2019, 3snakes

The effective beam refreshment time τ_{beam} =100 s looks feasible with our polarized e⁻ source.

What about polarized positrons?

- The production rate of polarized electrons from a source is unlimited.
- But use of the Sokolov-Ternov mechanism to produce the polarized positrons in ~1 GeV Damping Ring is not so effective.
- Only 40-60% of the polarization degree (in average) can be achieved by this manner. Polarization time about 1 min looks feasible.
- Besides, the double set of the Siberian Snakes should be installed in two storage rings to handle the longitudinal polarization of both beams.
- The question arises: is there any sense to go this way? How much we gain from having 40-60 % for positrons and 70-80% of electrons polarization?
- Until now we do not consider this option seriously.

Conclusion

- 1 snake provides up to 80% 90% of the longitudinal polarization at low energies: E < 1.5 GeV. This option can be considered as a first stage for polarization program.
- 3 snakes provide also high enough polarization degree, about 70-80%, in the energy range E < 2.5 GeV and only about 50% at 3 GeV. Currently this is the main scenario, because it fulfils to the main physics program requirements.
- No preferable sign of the polarization! This helps to fight with not all but many systematic errors, caused by the detector registration efficiency asymmetries.
- The preliminary design of the superconducting solenoids and of the polarized electron source was already done. Practical experience was achieved in 90-th at AmPS stretcher ring in NIKHEF, Amsterdam.
- And the last remark: the tolerances on the quads gradient integrals and the solenoid field integrals in Snakes are not too much stringent: in a range of few percent.