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1. Motivation

• During inflation the universe rapidly expands and the
observed classical distribution of inhomogeneities orig-
inates from the substantially non-classical state.

• The problem of transition from quantum to classical be-
havior can be solved in the context of the theory of deco-
herence induced by environment.

• We are taking into account that the long wavelength per-
turbations become unobservable and considering deco-
herence of background degrees of freedom while main-
taining information about short wavelength perturbations.

2. Inflaton field with quantum fluctuations

The action of the scalar field, minimally coupled to gravity,
has the form:
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Let us consider inhomogenious perturbations over a flat
FLRW metric and homogeneous scalar field background:

ds2 = e2α(η)
{

(2A− 1)dη2 + 2(∂iB)dxidη + [(1− 2ψ)δij + 2∂i∂jE + hij]dx
idxj

}
Φ(~x, t) = Φ(t) + φ(~x, t)

Where A,B, ψ,E — scalar functions, hij = hji, hii = 0 and ∂ihij = 0
After substituting perturbed metric and scalar field to the Hamiltonian,
it decomposes into individual components:

H = H0 +HS +HT ,

Introduce the following notation:
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then the Hamiltonians take the form:
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Finally, master Wheeler-DeWitt equation is:
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Since we believe that the perturbations are small and different modes
do not interact, the solution can be sought in the form of the Born-
Oppenheimer approximation [1]:
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For the homogeneous part we use the semiclassical WKB approxima-
tion:

Ψ0(α,Φ) ≈ A(α,Φ)eiL
3S0(α,Φ)−L 3R(α,Φ), |5R| � |5S0|

The R function provides the wave packet shape and is associated with
the A function. Further, we assume that|5R| � |5S0|, which corre-
sponds to the center of the wave packet.
We also introduce the conformal WKB time [2, 3]:
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It goes along classical trajectories and in the first approximation it can
be identified with the classical conformal time.

In terms of the WKB time, the Wheeler-DeWitt equation for the fluctua-
tion part of Ψ~k takes the form:
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where ω2
k(η) is calculated on the classical trajectory passing through

(α,Φ) in the direction given by S0. We can see that it is the Schrödinger
equation.

Since some of the recent measurements of the anisotropy of the relict
background did not show deviations of the primary fluctuations from the
Gaussian form [4], we assume that the scalar and tensor perturbations
are in the ground state, which allows us to use the ansatz in the form
of a Gaussian distribution to find a solution to the Schrödinger equation.

Ψ~k,0 = N~k,0(η)e
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k

In order to fix the solution, we note that the first derivatives are absent in
the equation, which means that, according to the Liouville-Ostrogradsky
formula, the Wronsky determinant is Wf = ḟ ∗f − f ∗ḟ = const. We
choose the normalizationWf = i. We also impose the asymptotic con-
dition f −−−−→

η→−∞
e−ikη√

2k
.

As mentioned above, the Mukhanov-Sasaki variable obeys the Klein-
Gordon-Fock equation with a time-dependent potential on the back-
ground of the Minkowski metric [5], and its wave function evolves as an
oscillator with a time-dependent frequency. Then for v̂k we can intro-
duce the creation and annihilation operators. To search for the vacuum
state, we use the fact that the annihilation operator, acting on it, yields
zero. Then the equation for the vacuum state âΨ~k,0 = 0 can be written
as:
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It turns out that in order for the solution to satisfy this equation while
maintaining the norm
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3. Power-law inflation

Let us consider the power-law inflation eα ∼ tp with slow-roll condition,
i.e. Φ̇� V (Φ), Φ̈� 3HΦ̇. It can be parametrized by ε = − Ḣ

h2 , δ = − Φ̈
HΦ̇

.
In this case, it turns out that ε = δ = 1

p = const. And if we use conformal
time, then eα ∼ η1+β.
Thus, frequencies in Muhanov-Sasaki equation can be rewritten in the
following way
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Then the equation for classical fluctuations is
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This is Bessel equation, and its solution can be written in terms of the
Hankel functions as:
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it satisfies
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Vacuum solution:
Ψ~k,0(vk) =
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ḟ∗
f∗v

2
k

Knowing the classical solution, we automatically obtain vacuum solu-
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Various classical solutions are parametrized by β, which is defined by
the initial conditions. Lets recall that the wave function is a WKB wave-
package consisting of a bundle of classical trajectories, i.e.
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Corresponding density matrix:

ρ(β, β̃, {vs,~k, vT,~k}, {ṽs,~k, ṽT,~k}) =
∏
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We now take into account the fact that conformal time is also a comov-
ing horizon that defines a cause-related region. If the wavelength of

the perturbation is more than the size of the horizon, then we cannot
observe it in any way. Therefore, we are going to assume that these
modes are a kind of environment for all the others, and we introduce
a reduced density matrix, which allows us to observe the decoherence
process depending on different β and β̃.

The reduced density matrix for short wavelength modes
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Until now, we have been considering the discrete spectrum of the wave
vectors ~k, but since the volume of space is actually infinite, then we can
consider the spectrum as a continuous one. To do this, we rewrite the
first product in the following way:
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The sum in the exponent can be replaced back by the integral
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Here we have taken into account the fact that the conformal time takes
only negative values.

Due to the complexity of the integrand, the integration was performed
numerically. As a result, we obtained the following graphs of the short-
wave part of the density matrix for different values η.

η = −10 η = −1

η = −0.1

The graphs clearly show that the diagonal is normalized to 1; as the
difference between β − β̃ increases, the off-diagonal terms decrease.
With a decrease in η modulo, that is, when the system tends to +∞
in cosmological time, the diagonal elements increasingly dominates, so
the system behaves in an increasingly classical way, and the interfer-
ence is suppressed.

4. Conclusion

• We considered the evolution of the universe, which was originally in
a vacuum state.

• Over time, an increasing number of perturbation modes of the met-
ric and inflaton field goes beyond the cosmological horizon and
becomes unobservable. We showed that during this process, the
density matrix becomes mixed for short wavelength modes, in the
limit diagonal in the β, the variable characterizing the rate of inflation.

• This suggests that, from the point of view of the local observer, the
coherent wave package in late times corresponds to the classical
probability distribution of background metrics.
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