Production Gravitational Waves
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Light geodesics in the Schwarzschild metric

Tangent vector to geodesic p*.
p"¢, = Ck = const.
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Light geodesics in the Schwarzschild metric

Motion in the equatorial plane, so # = /2. Killing vectors:
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Light geodesics: p#p, =0
—(1 —2M/r)E2 + (1 —2M/r) 12 +r2¢% =0
Conservation of energy
E=—¢(p%=(1—-2M/r)t
Angular momentum concervation
L = nap® = r¢’



Light geodesics in the Schwarzschild metric

Combining 3 equations:
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Photons accumulate around r = 3M

Bright ring around a black hole M87*




Penrose process

Ring singularity

Ergoregion -Inner horizon

Event horizon Static limit

Static observers do not exist inside the ergosphere.

The Killing vector /0t becomes spacelike (it is outside the light cone).



Penrose process

Static observers do not exist inside the ergosphere.

The Killing vector /0t becomes spacelike (it is outside the light cone).
The energy £ = —p"¢,, > 0 for timelike future directed /0t and p*.
For the spacelike Killing vector © may be both positive or negative.

Negative energy particles cannot leave the ergosphere

A particle 0 with energy E enters the
ergosphere and decays there into two
particles, 1 and 2.

The energy of particle 2 is negative
(fall into the black hole)

In this process the energy is extracted.
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fig from the book by Frolov&Zelnikov



Gravitational waves and black holes



Perturbation of black holes

Test scalar field in the Schwarzschild geometry

2M dr?
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Equation of motion for a massless scalar field ®

@ = (~9)"/%0, |(~9)" /29" 0,®| =0

The metric is spherically symmetric, we introduce the mode decomposition
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Yy, the standard spherical harmonics. AY,, = —£(£ + 1)Ys,,
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Equation on wuy(r,1):
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Perturbation of black holes

Test scalar field in the Schwarzschild geometry

Assume a harmonic time dependence, uy(r,t) = 1y(r,w)e !
d? X
[—dr2 +w? = Vy(r )] te(r,w) = 0.
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The effective potential Vy(r) corresponds to a single potential barrier.
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Perturbation of black holes

Test scalar field in the Schwarzschild geometry

The potential vanishes at both »r = 400 and r = 2M =

ﬁg(’l“,w) -~ e:l:iwr*

Two linearly independent solutions asymptotically.



Perturbation of black holes

The perturbed Schwarzschild metric can be written in general as

ds® = —e?dt* + e*¥ (d¢ — qidt — godr — q3d6’)2 + e2H2dr? 4 e?H3 h?
Where for the unperturbed case
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el =r, €Y =rsinh, ¢ =g =q3=0.

$ Axial (odd-parity) perturbation:

q1, g2, and g3 are first-order quantities, introduce frame dragging (rotation
of BH);

& Polar (even-parity) perturbation:

For perturbations of dv, 01, 0o, and ou3 there is no frame dragging since
® — —@ is a symmetry for these perturbations.



Perturbation of black holes

hMV ::ef%wthuy
In the Regge-Wheeler gauge

Axial perturbations
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Perturbation of black holes

The Einstein equations give 10 coupled second-order differential equations: 3
for the odd radial variables, and 7 for the even variables.

- Odd perturbations they be combined in a single Regge-Wheeler gravitational
variable W__,,

- Even perturbations can be combined in a single Zerilli gravitational variable

U
They satisfy the Schrodinger-like equation
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Boundary conditions

Boundary conditions at the horizon. The potential V' — 0 as r, — —oq,
so U ~ e ™(Er+)  Nothing should leave the horizon: only ingoing modes

(corresponding to a plus sign) should be present

U~ e W) e s oo (r—ry) .

Boundary conditions at spatial infinity. The potential is zero at infinity. Requir-
Ing
—iw(t—r,
U~ e wlmd e o0,

we discard unphysical waves "entering the spacetime from infinity”. Only out-
going modes are allowed.



Quasinormal modes

%

In this study waves escape either to infinity or into the BH.

Difference between this type of QNM problems and other physical prob-
lems, i.e. the vibrating string: the system is now dissipative.

For this reason an expansion in normal modes is not possible.

There is a discrete infinity of QNMs, defined as eigenfunctions satisfying
the boundary conditions.

The corresponding eigenfrequencies wgn s have both a real and an imag-
inary part, the latter giving the (inverse) damping time of the mode.

QNMs do not form a complete set of wavefunctions.

Ringing of a black hole leads to radiation of
gravitational waves



Quasinormal modes
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The signal from two equal-mass BHs initially gravitational waveforms from numerical

on quasi-circular orbits, inspiralling towards simulations of two equal-mass BHs, colliding
each other due to the energy loss induced by head-on with v/c = 0.94

gravitational wave emission, merging and

forming a single final BH

from E.Bertil, V.Cardoso, A.Starinets'09



Quasinormal modes
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the gravitational waveform (or more precisely,

the dominant, 1 = 2 multipole of the Zerilli two massive neutron stars (NSs) with a

function) produced by a test particle of mass polytropic equation of.state, INSpir alli.ng
u falling from rest into a Schwarzschild BH and eventually collapsing to form a single
BH.

from E.Bertil, V.Cardoso, A.Starinets'09



Detection of gravitational waves
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Gravitational wave interferometer
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from talk by E.Porter




Gravitational wave interferometer

Merger Ring-
down
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Gravitational wave interferometer

Masses In the Stellar Graveyard

Masses of detected LIGO/Virgo compact binaries. This plot shows the masses of all
compact binaries detected by LIGO/Virgo, with black holes in blue and neutron stars in
orange. The objects are arranged in order of discovery date.




Gravitational wave interferometer
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Effective spiral spin. Each contour represents the 90% credible region for a different
event.

Abbott et al, arXiv:2010.14527(2020)



Constraints on gravity theories

® In general relativity w = |k|
& In modified gravity the relation can be different. E.g. in massive gravity

w2:k2—|—m3

& Frequency dependent dephasing of of the GW signal.

¢ m, < 1.76 x 1075 eV /¢?



Constraints on gravity theories

GW170817
®Detected Aug. 17, 2017

®Brightest GW event yet seen
®Luminosity distance of 40 Mpc

@ Multiple EM confirmations in gamma, x-ray, optical, radio

The time delay between the GW and GRB detections At = (1.74 £ 0.05) s

Fractional difference between the speed of light and GWs N C—

C

—3x 107 < Ac < 7x 1071
C

= Many (solutions of ) modified gravity theories are ruled out



Gravitational waves from black holes

Test GR
Rule out gravity theories
Get hints on modifications of gravity



