

Moscow International School of Physics 2022

Dubna International Advanced School of Physics

Recent CMS flavor physics results

<u>Sergey Polikarpov</u> NRNU MEPhI, LPI RAS

MISP 2022 Dubna 28 July 2022

Outline

- \triangleright Why B \rightarrow µµ? + previous results
- CMS experiment
- ➤ Analysis strategy
- ➤ Backgrounds
- > Event selection
- > Results

Why $B \rightarrow \mu\mu$?

The branching fractions of B^0 and $B^0_s \rightarrow \mu\mu$ decays are predicted precisely in the *SM* and are very low

$$B(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$

$$B(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$$

[Beneke, Bobeth, Szafron, JHEP10(2019) 232]

- The decays also present clean experimental signature
- ➤ Any deviations from *SM* would present **a sign of** *NP*

B→μμ: previous results

- ➤ ATLAS, CMS, LHCb have their results from partial Run-2:
 - ATLAS, 2015+2016 data, combined with Run-1, December 2018
 - CMS, Run-1 + 2016 data, October 2019
 - <u>LHCb</u>, Run-1 + 2016 data, March 2017
- Statistical Combination CMS+ATLAS+LHCb was performed in 2020 (not published)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.69 \, ^{+\, 0.37}_{-\, 0.35}) \times 10^{-9}$$

CMS-PAS-BPH-20-003 ATLAS-CONF-2020-049 LHCb-CONF-2020-002

Compatible with SM within 2.1 σ

$B\rightarrow \mu\mu$

➤ The latest results [until ~2 weeks ago] on 30-year-long search are from LHCb, August 2021, Full Run-1 + Run-2

■
$$B_s^0 > 10\sigma$$
, $B^0 \sim 1.7\sigma$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.09^{+0.46}_{-0.43}^{+0.15}_{-0.11}) \times 10^{-9},$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.20^{+0.83}_{-0.74} \pm 0.14) \times 10^{-10},$$

$${\cal B}(B^0\! \to \mu^+\mu^-) \ < \ 2.6 imes 10^{-10} \ {
m at} \ 95\% \ {
m CL}$$

History a 30 years search

LHCb-PAPER-2021-008, Phys.Rev.D105(2022)012010 LHCb-PAPER-2021-007, Phys.Rev.Lett.128(2022)041801

Papers also reports effective lifetime and $B_s^0 \rightarrow \mu^+ \mu^- \gamma$

CMS experiment

Analysis strategy

External input, ratio of B_s⁰ and B⁺ production xsections

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(B^{+} \to J/\psi K^{+}) \frac{N_{B_{s}^{0} \to \mu^{+}\mu^{-}}}{N_{B^{+} \to J/\psi K^{+}}} \frac{\varepsilon_{B^{+} \to J/\psi K^{+}}}{\varepsilon_{B_{s}^{0} \to \mu^{+}\mu^{-}}} \frac{f_{u}}{f_{s}}$$

$$\left(\mathbf{O\Gamma} \quad \mathcal{B}(\mathbf{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathbf{B}_{\mathrm{s}}^{0} \to \mathbf{J}/\psi\phi) \frac{N_{\mathbf{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-}}}{N_{\mathbf{B}_{\mathrm{s}}^{0} \to \mathbf{J}/\psi\phi}} \frac{\varepsilon_{\mathbf{B}_{\mathrm{s}}^{0} \to \mathbf{J}/\psi\phi}}{\varepsilon_{\mathbf{B}_{\mathrm{s}}^{0} \to \mu^{+}\mu^{-}}}, \quad \right)$$

$$\mathcal{B}(\mathrm{B}^0 \to \mu^+ \mu^-) = \mathcal{B}(\mathrm{B}^+ \to \mathrm{J}/\psi \mathrm{K}^+) \frac{N_{\mathrm{B}^0 \to \mu^+ \mu^-}}{N_{\mathrm{B}^+ \to \mathrm{J}/\psi \mathrm{K}^+}} \frac{\varepsilon_{\mathrm{B}^+ \to \mathrm{J}/\psi \mathrm{K}^+}}{\varepsilon_{\mathrm{B}^0 \to \mu^+ \mu^-}} \frac{f_{\mathrm{u}}}{f_{\mathrm{d}}} \longrightarrow 1$$

Branching fractions are measured using the <u>normalization channel</u> $B^+ \rightarrow J/\psi K^+$

Most systematic uncertainties cancel in the ratio

Data are split into 16 = 4*2*2 categories:

- 4 data-taking periods (2016a, 2016b, 2017, 2018)
- \circ 2 $|\eta_u|$ (muon pseudorapidity) regions
- 2 ranges of MVA discriminator (0.9<MVA<0.99 and 0.99<MVA<1) see later

Fitting separately low- and high-sensitivity regions and combining the results yields in a more precise result

Backgrounds

Partially-reconstructed decays Combinatorial background

Decays in-flight of pions and kaons from $B\rightarrow hh$, resulting in double muon fakes.

- The most complicated bkg! Looks like signal
- Reduced with MVA-based muon identification
 - *detecting imperfections in muon trajectory*
 - Calibrated in data with $\phi(1020) \rightarrow K^+K^-$ and $K_S^0 \rightarrow \pi^+\pi^-$ decays
- Rate is \sim comparable to $B^0 \rightarrow \mu\mu$, and the shape is close to $B^0 \rightarrow \mu\mu$

Event selection

Full Run-2 data (140 fb^{-1})

Loose pre-selection before MVA:

Selection	$\mathrm{B} o \mu^+ \mu^-$	$\mathrm{B^+} \to \mathrm{J/}\psi\mathrm{K^+}$
B candidate mass [GeV]	[4.90, 5.90]	[4.90, 5.90]
Blinding window [GeV]	[5.15, 5.50]	
$p_{\mathrm{T}\mu}$ [GeV]	>4	>4
$ \eta_{\mu} $	< 1.4	< 1.4
3D SV displacement significance	> 6	>4
$p_{\mathrm{T}\mu\mu}$ [GeV]	> 5	> 7
μμ SV probability	> 0.025	> 0.1
$\mu\mu$ invariant mass [GeV]	[4.9, 5.9]	[2.9, 3.3]
Kaon $p_{\rm T}$ [GeV]		> 1
Mass-constrained fit probability		> 0.025
2D $\mu\mu$ pointing angle [rad]		< 0.4

Final selection:

MVA trained with XGBoost

(MC for signal, data sidebands for bkg) is used to suppress dominant backgrounds Employed variables identify the

distinct topology of B→µµ decays

- 2D and 3D pointing angles α
- 2D and 3D impact parameter δ
- Flight length l and its significance l/σ_l
- Dimuon vertex quality
- Isolation of muons and the dimuon

Normalization channel $B^+ \rightarrow J/\psi K^+$ is used to calibrate MVA with data

 $p_{\rm T}({\rm K}^+)$ < 1.5 GeV and rescaled l/σ_l make a bridge between B $\to \mu^+\mu^-$ and B $^+\to J/\psi {\rm K}^+$

Results

Merged (2016-2018, both $|\eta_{\mu}|$ intervals) projections of the fit and data in 2 MVA ranges

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left[3.83^{+0.38}_{-0.36} \text{ (stat)} \right]^{+0.19}_{-0.16} \text{ (syst)} \right]^{+0.14}_{-0.13} (f_s/f_u) \times 10^{-9},$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left[0.37^{+0.75}_{-0.67} \text{ (stat)} \right]^{+0.08}_{-0.09} \text{ (syst)} \times 10^{-10}.$$

$$\mathcal{B}(B^+ \to J/\psi K^+) = (1.020 \pm 0.019) \times 10^{-3}$$
, $\mathcal{B}(J/\psi \to \mu^+ \mu^-) = (5.961 \pm 0.033) \times 10^{-2}$, $f_s/f_u = 0.231 \pm 0.008$.

Results for $\mathcal{B}(B_s^0 \to \mu^+\mu^-)$

The most precise measurement to date! Excellent consistency with the SM!

Results (simplified version)

Results for $\mathcal{B}(B^0 \to \mu^+\mu^-)$

The most stringent single-experiment upper limit!

Summary

- \clubsuit A new measurement of B $\rightarrow \mu\mu$ decays is performed by CMS
- *The result has world-leading precision and agrees with the SM
- Measurement of $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime is also reported (see backup)
- combination!

Now waiting for **SATLAS** result to perform a full LHC Run-2

- * Run-3 will bring additional sensitivity with improved triggers!
 - Most likely we need to wait until Run-4 to observe $B^0 \rightarrow \mu^+\mu^-$

Read more: **CMS-BPH-21-006**

> cms.cern/news/new-study-rare-b-meson-decays-two-muons https://cds.cern.ch/record/2815334/files/BPH-21-006-pas.pdf

Thank you!

Summary

Most likely we need to wait until Run-4 to observe $B^0 \rightarrow \mu^+ \mu^-$

Thank you!

BACKUP

Systematic uncertainties

Effect	$B_{ m s}^0 ightarrow \mu^+\mu^- B^0 ightarrow \mu^+\mu^-$		
Trigger efficiency	2 - 4%		
Pileup	1%		
Vertex quality requirement	1%		
MVA _B correction	2–3%		
Tracking efficiency (per kaon)	2.3%		
$B^+ \rightarrow J/\psi K^+$ shape uncertainty	1%		
Fit bias	2.2% 4.5%		
$f_{\rm s}/f_{\rm u}$ - ratio of the B meson production fractions	3.5% -		

Signal efficiency is correlated with the lifetime

- Branching Fractions are measured assuming the SM value
- For alternative lifetime hypothesis scale BF using the following expression

$$\alpha_{\rm BF} = 1.577 - 0.358 \ \tau$$

T is in ps

$f_{\rm s}/f_{\rm u}$

$$\mathcal{B}(B_{s}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(B^{+} \to J/\psi K^{+}) \frac{N_{B_{s}^{0} \to \mu^{+}\mu^{-}}}{N_{B^{+} \to J/\psi K^{+}}} \frac{\varepsilon_{B^{+} \to J/\psi K^{+}}}{\varepsilon_{B_{s}^{0} \to \mu^{+}\mu^{-}}} \frac{f_{u}}{f_{s}}$$

- $f_s/f_u = 0.231 \pm 0.008$
 - Based on P_T-dependent results from LHCb
 - PRD 104 (2021) 032005
 - Integrate with the effective P_T distribution
 - Previous measurement used 0.252±0.032
- Resulting BF can be rescaled:
 - One can use a different f_s/f_u value
 - Treated as an external uncertainty
 - not as a constrained nuisance parameter

Effective lifetime measurement

- In the absence of CP violation only the heavy Bs state decays into dimuon
 - Different composition of states may be allowed by New Physics.
- Efficiency correction
 - Decay time efficiency derived from MC
 - Corrected by $B^+ \rightarrow J/\psi K^+$ data to mitigate the bias from tight MVA_B requirement.
 - The residual bias and the difference between $B_s \rightarrow \mu\mu$ and $B^+ \rightarrow J/\psi K^+$ are considered as a systematic uncertainty.

Systematics:

Effect	2016a	2016b	2017	2018
Efficiency modeling	0.01			
Lifetime dependence	0.01			
Decay time distribution mismodeling	0.10	0.06	0.02	0.02
Lifetime fit bias	0.04	0.04	0.05	0.04
Total	0.11	0.07	0.05	0.04

Results for effective lifetime

$$\tau = 1.83^{+0.23}_{-0.20} \text{ (stat)} ^{+0.04}_{-0.04} \text{ (syst) ps}$$

The most precise measurement! In agreement with SM

b→*sll* as New Physics probes

- $\triangleright b \rightarrow sll$ transitions are precisely predicted by Standard Model
- ➤ Processes are rare (loop level, CKM-suppressed)
 - → new interactions can be major contribution
- ➤ New interactions can have different symmetries from the SM
- ➤ NP can modify parameters of angular distributions observed in multibody decays $B\rightarrow h\,l^+\,l^-$

B→µµ LHCb

- Simultaneous fit in 10 bins 2 datasets (Run 1, 2) \times 5 BDT bins
- External constraints on yield and shape of misidentified backgrounds
- Combinatorial background free
- Signal shapes calibrated and constrained
 - All systematic uncertainties directly propagated

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.09 \, {}^{+\, 0.46 \, +\, 0.15}_{-\, 0.43 \, -\, 0.11}\right) \times 10^{-9}$$

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = \left(1.2^{+0.8}_{-0.7} \pm 0.1\right) \times 10^{-10} < 2.6 \times 10^{-10}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m_{\mu\mu} > 4.9 \,\text{GeV}} = (-2.5 \pm 1.4 \pm 0.8) \times 10^{-9} < 2.0 \times 10^{-9}$$

No significant signal for $B^0 \to \mu^+\mu^-$ and $B_s^0 \to \mu^+\mu^-\gamma$, upper limits at 95%

First world limit on $B_s^0 \to \mu^+ \mu^- \gamma$ decay

Measured effective lifetime $\tau_{\rm eff}(B_s^0 \to \mu^+\mu^-) = 2.07 \pm 0.29 \pm 0.03 \,\mathrm{ps}$

Consistent at 1.5σ and 2.2σ with the heavy and light B_s^0 eigenstates lifetimes

B→µµ LHCb

- Normalised to two channels: $B^+ \to J/\psi K^+$ and $B^0 \to K^+\pi^-$
- Multivariate operator against combinatorial background
- Tight PID calibrated on data against misID

5500

 $m_{K^+\pi^-}$ [MeV/ c^2]

5400

5100

5200

5300

Significant improvement in hadronisation fraction $\frac{f_s}{f_d}(13 \text{ TeV}) = 0.2539 \pm 0.0079$ from combined measurement [LHCb-PAPER-2020-046 - PRD 104, 032005 (2021)]

$$\mathcal{B}(B_{d,s}^{0} \to \mu^{+}\mu^{-}) = \underbrace{\frac{f_{\text{norm}}}{f_{\text{sig}}}}_{\text{Hadronisation}} \underbrace{\frac{\varepsilon_{\text{norm}}}{v_{\text{sig}}}}_{\text{Factions}} \underbrace{\frac{N_{\text{sig}}}{N_{\text{norm}}}}_{\text{Norm}} \mathcal{B}(\text{norm}) = \underbrace{\alpha_{\text{sig}}}_{\text{Single}} \underbrace{N_{\text{sig}}}_{\text{Single}} \underbrace{N_{\text{sig}}}_{\text{Single}} \underbrace{N_{\text{sig}}}_{\text{Single}} \underbrace{N_{\text{sig}}}_{\text{event}} \underbrace{N_{\text{sig}}}_{\text{sensitivity}} \underbrace{N_{\text{sig}}}_{\text{Single}} \underbrace{N_{\text{sig}}}_{\text{sensitivity}} \underbrace{N_{\text{sig}}}_{\text{Single}} \underbrace{N_{\text{sig}}}_{\text{sensitivity}} \underbrace{N_{\text{$$

5250

5200

5300

5350

 m_{J/wK^+} [MeV/ c^2]

 10^{-3}

10

0.2

0.6

0.8

BDT

On f_s/f_u and normalization

- \triangleright LHCb, CMS, ATLAS normalize B_s^0 using the $B^+ \rightarrow J/\psi$ K⁺ decay;
 - ightharpoonup LHCb in addition uses $B^0 \rightarrow K^+\pi^-$, with low relative weight
- This makes f_s/f_u , ratio of B_s^0 and B^+ production, a **crucial** ingredient
- \triangleright The current 13 TeV LHCb best value is 0.254 ± 0.008 [assuming $f_u = f_d$]
 - ➤ In CMS, the uncertainty is increased to cover √s and kinematic region dependence
 - Previous CMS result uses 0.015 additional uncertainty, arriving at $f_s/f_u = 0.252 \pm 0.019$
 - ➤ This 8% of additional uncertainty is one of the leading uncertainties

On f_s/f_u and normalization

- ightharpoonup Other possibility is to normalize using the $B_s^0 o J/\psi \ \phi$ decay
- ightharpoonup Current PDG uncertainty is dominated by LHCb measurement, which is done via B⁺ \rightarrow J/ ψ K⁺ and $f_{\rm s}/f_{\rm u}$, i.e., completely correlated with $f_{\rm s}/f_{\rm u}$
- ightharpoonup Belle measurement of $\mathbf{B}(\mathrm{B_s^0} \to \mathrm{J/\psi}\,\phi)$ has ~20% uncertainty
- ightharpoonup No B_s^0 decay is measured with a precision of better than 10%
 - \triangleright Often, the **B** is normalized using f_s/f_d or f_s/f_u
- > The "desired" solution to get out of this vicious circle would be Belle II running on Y(5S) resonance and precisely measuring absolute B_s^0 branching fractions \odot
- \triangleright With Run-3 data, this normalization channel issue will probably be the leading uncertainty in B(B_s⁰→μμ) for CMS & ATLAS

B→ee, B→ττ

 \triangleright Similar, from theoretical point of view, rare decays, predicted B are lower (higher) for e (τ) than for μ :

$$\mathcal{B}(B_s^0 \to e^+ e^-) = (8.60 \pm 0.36) \times 10^{-14}$$

$$\mathcal{B}(B^0 \to e^+ e^-) = (2.41 \pm 0.13) \times 10^{-15}$$

$$\mathcal{B}(B_s^0 \to \tau^+ \tau^-) = (7.73 \pm 0.49) \times 10^{-7}$$

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) = (2.22 \pm 0.19) \times 10^{-8}$$

- > However, significantly more challenging experimentally
 - Electrons produce bremsstrahlung radiation in magnetic field, resulting in reduced precision (wide peak)
 - \blacktriangleright Taus quickly decay with 1 or two missing neutrinos per one τ lepton, many decay modes, large backgrounds, very broad peak in $m(\tau\tau)$
- \triangleright With LFU, different NP effects can affect ee, μμ, and ττ modes differently \rightarrow important to search/study all 3 decay modes!

B→ee, B→ττ

Neural network output

LHCb has performed searches for ee and $\tau\tau$ decays **ee**: Run-1+2015+2016

$${\cal B}(B_s^0 o e^+ e^-) < 9.4\,(11.2) imes 10^{-9} {
m at} \ 90\,(95)\,\%$$
 CL ${\cal B}(B^0 o e^+ e^-) < 2.5\,(3.0) imes 10^{-9} {
m at} \ 90\,(95)\,\%$ CL normalized to B+ \to J/ ψ (ee) K+

LHCb-PAPER-2020-001, Phys.Rev.Lett.124(2020)211802

ττ: Run-1 analysis, normalized to B \rightarrow DD_s

$$\mathcal{B}(B_s^0 \to \tau^+ \tau^-) < 6.8 \times 10^{-3} \text{ at } 95\%$$
 CL

$$\mathcal{B}(B^0 \to \tau^+ \tau^-) < 1.6 (2.1) \times 10^{-3} \text{ at } 90 (95)\% \text{ CL}$$

LHCb-PAPER-2017-003, Phys.Rev.Lett.118(2017)251802

Upper limits many orders of magnitude larger than SM predictions

$B \rightarrow \mu \mu \mu \mu$

➤ If no intermediate resonance, FCNC transitions:

➤ Very rare in SM:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^- \mu^+ \mu^-) = (0.9 - 1.0) \times 10^{-10}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^- \mu^+ \mu^-) = (0.4 - 4.0) \times 10^{-12}$

Some SM extensions involve intermediate scalar $B\rightarrow aa\rightarrow 4\mu$ with $m(a)\sim 1GeV$

Tensions in b→sll transitions

- Multiple discrepancies are observed in $b \rightarrow s \ell \ell$ processes
 - 3.1σ Lepton Flavour Universality violation in R(K) and R(K*)
 - 2-3 σ discrepancies in branching fraction and angular observables
- Discrepancies can be described by two 4-fermion contact interaction operators

$$O_9^{bs\ell\ell} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell) \qquad O_{10}^{bs\ell\ell} = (\bar{s}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell)$$

Angular analyses of $b\rightarrow sll$ transitions

➤ Many recent results measuring angular parameters and differential branching fractions

Angular analyses of $b \rightarrow sll$ transitions

BF measurement of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ and $B_s^0 \rightarrow f_2'(1525) \mu^+ \mu^-$

LHCb Run-1 + Run-2

LHCb-PAPER-2021-014, Phys.Rev.Lett.127(2021)151801

 \sim 3.6 σ tension w.r.t. SM at low q²

More details in the parallel talk by Samar N. yesterday

First observation! BF compatible with SM

Angular analyses of $b\rightarrow sll$ transitions

Angular analyses of $b \rightarrow sll$ transitions

 $\mathbf{B}^+ \to \mathbf{K}^{*+} \boldsymbol{\mu}^+ \boldsymbol{\mu}^-$, $(K^{*+} \to K^0_S \, \pi^+)$ LHCb Run-1 + Run-2, ~90 signal Lower statistics compared to K^{*0} channel because of K^0_S Two categories based on K^0_S decay vertex position

Angular analysis, measuring full set of optimized variables, F_L , S_3 , S_4 , S_5 , A_{FB} , S_7 , S_8 , S_9 , P_1 , P_2 , P_3 , P_4 , P_5 , P_6 , P_8 in 5 folds of the data, due to limited stat.

3.1 σ tension w.r.t SM at low q²!

P5' HL-LHC

- ◆ Run 3 and HL-LHC projections
 - Up to x15 improvement w/ 3 ab⁻¹ compared to the 8 TeV CMS result [PLB 781 (2018) 517]

Should be possible to resolve the situation experimentally already in Run 3

Rare charm decays

 $m (K^+ \mu^+ \mu^-) [\text{MeV}]$

Searches for 25 rare and forbidden decays of D^+ and D_s^+ mesons

 $m (K^{+} \mu^{+} \mu^{-}) [\text{MeV}]$

$B \rightarrow \mu \mu \mu \mu$

- ➤ Recent LHCb search uses Full Run1+Run-2 data
- \triangleright Using B_s⁰ → J/ψφ → 4µ for the normalization
- ► Search also performed for $B_{(s)}^0 \rightarrow J/\psi \mu \mu$ decays

LHCb-PAPER-2021-039, JHEP03(2022)109

Upper limits (with excluded known resonance regions) are most stringent to date

More details in the parallel talk by Christina A. yesterday

$$\mathcal{B} \left(B_{s}^{0} \to \mu^{+} \mu^{-} \mu^{+} \mu^{-} \right) < 8.6 \times 10^{-10} ,$$

$$\mathcal{B} \left(B^{0} \to \mu^{+} \mu^{-} \mu^{+} \mu^{-} \right) < 1.8 \times 10^{-10} ,$$

$$\mathcal{B} \left(B_{s}^{0} \to a \left(\mu^{+} \mu^{-} \right) a \left(\mu^{+} \mu^{-} \right) \right) < 5.8 \times 10^{-10} ,$$

$$\mathcal{B} \left(B^{0} \to a \left(\mu^{+} \mu^{-} \right) a \left(\mu^{+} \mu^{-} \right) \right) < 2.3 \times 10^{-10} ,$$

$$\mathcal{B} \left(B_{s}^{0} \to J/\psi \left(\mu^{+} \mu^{-} \right) \mu^{+} \mu^{-} \right) < 2.6 \times 10^{-9} ,$$

$$\mathcal{B} \left(B^{0} \to J/\psi \left(\mu^{+} \mu^{-} \right) \mu^{+} \mu^{-} \right) < 1.0 \times 10^{-9} .$$

m(a)=1GeV

38

promptly

decays

$B^0 \rightarrow \phi \mu \mu$

It proceeds mainly via the color-suppressed penguin annihilation diagrams $\mathcal{O}(10^{-12})$

 $\omega - \phi$ mixing can have a sizeble contribution $\mathcal{O}(10^{-10})$

Run 1 + 2 data

Exclude regions in q^2 corresponding to ϕ , J/ψ and $\psi(2S)$

 $B_s^0 o \phi \mu^+ \mu^-$ used as normalisation

 $B_s^0 \to J/\psi \phi$ used to develop a MVA discriminator

Dominant backgrounds: misidentification, combinatorial, semileptonic

(c)

$$\mathcal{B}(B^0 \to \phi \mu^+ \mu^-) < 3.2 \times 10^{-9} \text{ at a } 90\% \text{ CL}$$
(a)
$$Z, \gamma \downarrow \qquad \qquad \mu^- \downarrow \qquad \qquad \qquad \downarrow \mu^+ \downarrow \qquad \downarrow$$

LHCb-PAPER-2021-042, JHEP05(2022)067

$$K_S^0 \rightarrow \mu\mu$$

- **FCNC** process, in SM $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-)_{\rm SM} = (5.18 \pm 1.50_{\rm LD} \pm 0.02_{\rm SD}) \times 10^{-12}$
- ➤ Some NP (SUSY/LQ) models modify the **B**
- ➤ LHCb performed a search using Run-2 data
- \triangleright Normalization using decay to $\pi^+\pi^-$
 - This decay is also the main background

LHCb-PAPER-2019-038, Phys.Rev.Lett.125(2020)231801

Statistically combined with Run-1 result upper limit is most stringent to date:

$$\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10} \text{ at } 90\% \text{ CL}$$

LFV searches

- ➤ Lepton Flavor is conserved in SM to a very good precision
- ➤ Observation of LFV process at a rate above SM prediction would immediately point to New Physics contribution

$\tau \rightarrow \mu \mu \mu$

At LHC, two main channels for this search (depending on τ leptons' source):

- Heavy Flavor: abundant (especially from D_s^+) but challenging because of very low p_T , forward muons
- W $\rightarrow \tau \nu$: ~10⁴ time less yield, but very clear signature

Results from search @LHC:

• LHCb: HF channel, $\mathcal{L} = 3 fb^{-1}$

• ATLAS: W channel, $\mathcal{L} = 20 \ fb^{-1}$

• CMS: Both HF and W channels, $\mathcal{L} = 33 \ fb^{-1}$

Best UL set by the **Belle** experiment:

No evidence found

 $\mathcal{B}(au o 3\mu) < 4.6 \cdot 10^{-8}$ at 95% C.L.

 $\mathcal{B}(au o 3\mu) < 3.8\cdot 10^{-7}$ at 95% C.L.

 ${\cal B}(au o 3\mu) < 8.0\cdot 10^{-8}$ at 95% C.L.

 $\mathcal{B}(au o 3\mu) < 2.\,1\cdot 10^{-8}$ at 95% C.L.

LHCb-PAPER-2014-052, JHEP02(2015)121 ATLAS-EXOT-2014-14, Eur.Phys.J.C76(2016)5,232 CMS-BPH-17-004, JHEP01(2021)163

CMS Run-2 analysis in development

$B^+ \rightarrow K^+ \mu^- \tau^+$

LHCb Full Run 1 + Run 2 analysis

LHCb-PAPER-2019-043, JHEP06(2020)129

Using $B_{s2}^* \rightarrow B^+K^-$ decays to tag partially-reconstructed B^+ mesons

Normalization using $B^+ \rightarrow K^+ \mu^- \mu^+$ (with J/ψ)

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} \text{ at } 90\% \text{ CL}$$

Weaker than 2012 BaBar upper limit

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 2.8 \times 10^{-5} \text{ at } 90\%$$

More details in the parallel talk by Liang S. yesterday

$$B^+ \rightarrow K^+ \mu^{\mp} e^{\pm}$$

LHCb Run-1 analysis Normalization using $B^+ \rightarrow K^+ \mu^- \mu^+$ (with J/ψ) LHCb-PAPER-2019-022, Phys.Rev.Lett.123(2019)241802

$$\mathcal{B}(B^+ \to K^+ \mu^- e^+) < 7.0 \ (9.5) \times 10^{-9}$$

$$\mathcal{B}(B^+ \to K^+ \mu^+ e^-) < 6.4 \ (8.8) \times 10^{-9}$$

World-best limits

More details in the parallel talk by Liang S. yesterday

$B^0 \rightarrow K^{*0} \mu^{\mp} e^{\pm}$ and $B_s^0 \rightarrow \phi \mu^{\mp} e^{\pm}$

LHCP-PAPER-2022-008, in preparation. Full Run-1 + Run-2 analysis

World-best limits

More details in the parallel talk by Liang S. yesterday

ATLAS experiment

LHCb

- pp collisions at $\sqrt{s} = 7, 8, 13$ TeV
- $3 (6) \text{ fb}^{-1} \text{ in Run } 1 (\text{Run } 2)$