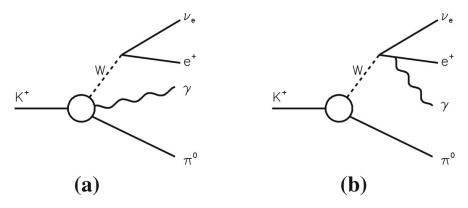


I.S.Tiurin NRC KI – IHEP «OKA» collaboration (IHEP – INR – JINR)

Measurement of the T-odd correlation in the $K^+ \rightarrow e^+ v \, \pi^0 \gamma$ radiative decay at OKA setup

The talk layout
OKA setup
Decays selection
Background suppression
Results



$K^+ \rightarrow e^+ v \pi^0 \gamma$ radiative decay

The matrix element for this decay has general structure:

$$T = \frac{G_F}{\sqrt{2}} e V_{us} \epsilon^{\mu}(q) \Big\{ (V_{\mu\nu} - A_{\mu\nu}) \overline{u}(p_{\nu}) \gamma^{\nu} (1 - \gamma_5) v(p_e)$$

$$+ \frac{F_{\nu}}{2p_e q} \overline{u}(p_{\nu}) \gamma^{\nu} (1 - \gamma_5) (m_e - \hat{p_e} - \hat{q}) \gamma_{\mu} v(p_e) \Big\} \equiv \epsilon^{\mu} A_{\mu}.$$

First term of the *T* describes the bremsstrahlung of kaon and the direct emission Fig.1a. The lepton bremsstrahlung presented by the second part of *T* and Fig.1b.

Fig. 1 Diagrams describing $K^+ \to \pi^0 e^+ \nu \gamma$ decay

$K^+ \rightarrow e^+ v \pi^0 \gamma$ radiative decay

 $K^+ \rightarrow e^+ v \pi^0 \gamma$ decay allow as to perform quantitative tests ChPT, thanks to theoretical developments over the past couple of decades as well as recent and ongoing high-statistics experimental studies.

The first complete analysis within ChPT to $O(p^4)$ order was performed by Bijinens et al. [Nucl. Phys. B396 (1993) 81]. Recently, the ChPT analysis was revisited and extended to $O(p^6)$ by Kubis et al. [Eur. Phys. J. C50 (2007) 557].

 $K^+ \to e^+ v \pi^0 \gamma$ decay is one of kaon decays where new physics beyond Standard model can be probed. This decay is especially interesting as it is sensitive to T-odd contributions. According to CPT theorem, observation of T-violation is equivalent to observation of CP-violating effects.

OKA: search for T-violation in K^+ decay

Important experimental observable used in CP-violation searches is the T-odd correlation for $K^+ \rightarrow e^+ v \, \pi^0 \gamma$ decay defined as

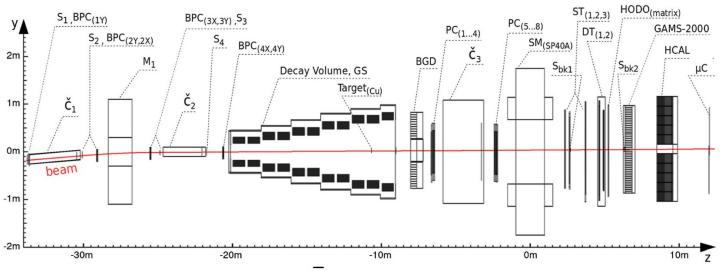
$$\xi_{\pi e \gamma} = rac{1}{M_K^3} p_{\gamma} \cdot [p_{\pi} imes p_e]$$

To establish the presence of nonzero triple-product correlations, one construct a T-odd asymmetry of the form

$$A_{\xi} = rac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

 $N_{+(-)}$ – number of events with $\xi > (<) 0$;

IHEP PS U-70


The OKA collaboration operates at the IHEP Protvino U-70 Proton Synchrotron.

Detector is located in positive RF-separated beam with 20% of *K*-meson.

17.7 GeV/c 3·10⁵ kaons per 2 sec U-70 spill. Separation is provided by two SC deflectors cooled by superfluid He.

OKA detector

$$Trg = S_1 \cdot S_2 \cdot S_3 \cdot S_4 \cdot ar{ ilde{C}}_1 \cdot ar{ ilde{C}}_2 \cdot ar{S}_{bk} \cdot (E_{GAMS} > 2.5 GeV)$$

- $S_1 S_4$ are scintillating counters; \check{C}_1 , \check{C}_2 Cherenkov counters (\check{C}_1 sees pions, \check{C}_2 pions and kaons); S_{bk} two scintillation counters on the beam axis after the magnet to suppress undecayed particles.
- 1. Beam spectrometer: PC, 1500 channels; 2. Decay volume with Veto system;
- 3. PC's and DT's for magnetic spectrometer: 5000 + 1300 channels;
- 4. Magnet; 5. Matrix hodoscope: SiPM 300 channels;
- 6. Gamma detectors: GAMS-2000; 7. Muon identification: HCAL + 4 muon trigger;

Decay Volume with Veto system

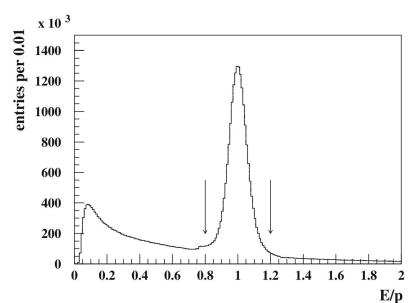
DV: 11m;

Veto: 670 Lead-Scintillator

sandwiches $20 \times (5 \text{mm Sc} + 1.5 \text{mm})$

Pb), WLS readout;

The total number of kaons entering the DV corresponds to $\sim 3.6 \times 10^{10}$.





Veto System

$K^+ \rightarrow e^+ v \pi^0 \gamma$ decay selection

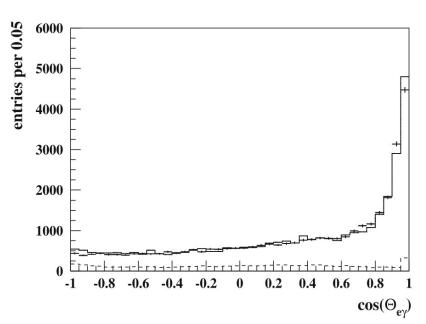
- 1. One charged track (K^+) in the tracking system, four showers ($E_\gamma > 0.7 \text{GeV}$) in the e/m calorimeters;
- 2. One shower must be assotiated with the charged track;
- 3. One charged track is identified as e^+ with 0.8 < E/p < 1.2;
- 4. The decay vertex situated within the decay volume;
- 5. The effective mass for γ -pair 0.12 < $M_{\gamma\gamma}$ < 0.15 GeV;

Background suppression

The main background decay channels for the decay $K^+ \rightarrow e^+ v \pi^0 \gamma$ are:

- 1) $K^+ \rightarrow e^+ v \pi^0$ with extra photon. The main source of extra photons are an interactions of positrons in the detector material;
- 2) $K^+ \to \pi^+ \pi^0 \pi^0$ where one π^0 photons not detected and π^+ decays to $e^+ v$ or misidentified as positron;
- 3) $K^+ \to \pi^+ \pi^0$ with fake photon and π^+ decayed or misidentified as positron. Fake photon clusters can come from π^+ hadron interaction in the detector, external bremsstrahlung, accidentals;
- 4) $K^+ \rightarrow \pi^+ \pi^0 \gamma$ when π^+ decays or is miss-identified as an positron;
- 5) $K^+ \rightarrow \pi^0 \pi^0 e^+ v$ when one γ is lost.

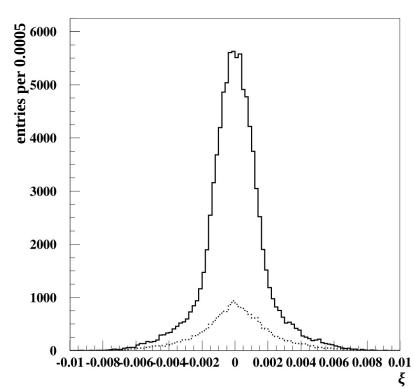
All these sources are included in our MC calculations.


Background suppression

To suppress the background channels we use a set of cuts:

- 1) $E_{miss} = E_{beam} E_{detected} > 0.5$ GeV. The requirement on the missing energy mainly reduces the background (4);
- 2) $\Delta y = |y_{\gamma} y_{e}| > 3$ cm, where y is the vertical coordinate of a particle in the electromagnetic calorimeter (the magnetic field turns charged particles in the xz-plane);
- 3) $|x_v|$, $y_v|$ < 100 cm. The reconstructed missing momentum direction must cross the active area of the electromagnetic calorimeter;
- 4) The reconstructed mass of the system $M(K^+ \rightarrow e^+ v \pi^0 \gamma) > 0.45 \text{GeV}$;
- 5) $|\mathbf{M}^2_{\text{miss}}(\pi^0 e^+ \gamma)| = (\mathbf{P}_K \mathbf{P}_{\pi^0} \mathbf{P}_e \mathbf{P}_{\gamma})^2 < 0.006 \text{ GeV}^2;$
- 6) 4 mrad $< \theta_{ey} <$ 80 mrad; The left part of this cut is introduced exactly for the suppression of background (1). The right cut is against $K_{\pi 2}$ background. 101200 candidates are selected, with a background of 17700 events.

Results


The distribution of the events over $\cos \theta^*_{ey}$. Points with errors are the real data, histogram – MC signal plus background, MC background - dotted line histogram.

The distribution of the events over E_y^* . Points with errors – the real data, histogram – MC signal plus background, MC background – dotted line histogram

Results

The distribution of the events over ξ . Background – dotted line histogram.

$$A_{\xi} = (-0.01 \pm 0.390(\text{stat.}) \pm 0.14(\text{syst.})) \times 10^{-2}$$

 $|A_{\xi}| < 0.0076$, CL = 90%;

Theoretical prediction for A_{ξ} from ChPT:

$$|A_{\xi}(K^+ \to \pi^0 e^+ v_e \gamma)| < 0.8 \times 10^{-4};$$

$$\xi_{\pi e \gamma} = rac{1}{M_K^3} p_{\gamma} \cdot [p_{\pi} imes p_e] \, ; \qquad A_{\xi} = rac{N_+ - N_-}{N_+ + N_-} \, ;$$

Summary

- 1.OKA collaboration, operating at IHEP Protvino U-70 PS in RF-separated beam, has accumulated large statistics of $K^+ \rightarrow e^+ v \pi^0 y$ decays;
- 2. Decay signal is extracted with a low background;
- 3. For our set of cuts we have 101200 selected events with 17700 background events. For the T-odd assymetry we got

$$A_{\xi} = (-0.01 \pm 0.39(\text{stat.}) \pm 0.14(\text{syst.})) \times 10^{-2}$$

Thank you for your attention!