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Parti
le linking physi
s, astrophysi
s, and more...
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A pie
e of history: from V. Pauli (1930) to F. Reines & C.Covan (1956).
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Horizons of multi-messenger high-energy astronomy & astrophysi
s

a

Figure shows the distan
es at whi
h the Universe be
omes opaque to ele
tromagneti
 radiation.

While lower-energy photons 
an travel to us from the farthest 
orners of the Universe, the highest

energy photons and 
osmi
 rays are attenuated after short distan
es, obs
uring our view of the most

energeti
 
osmi
 events. In 
ontrast, the Universe is transparent to gravitational waves and neutrinos,

making them suitable probes of the high-energy sky.

[From I. Bartos & M. Kowalski, �Multimessenger Astronomy� (Physi
s World Dis
overy, IoP Publishing, Bristol, 2017).℄
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Preview of lo
al ν/ν �ows in 
rude 
urves
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[Constru
ted from the data of L. M. Krauss et al., �Antineutrino astronomy and geophysi
s�, Nature 310 (1984) 191�198

and E. Vitagliano et al., �Grand uni�ed neutrino spe
trum at Earth: Sour
es and spe
tral 
omponents,� Rev. Mod. Phys.

92 (2020) 45006, arXiv:1910.11878 [astro-ph.HE℄ (left panel ) and A. M. Baki
h, �Aspe
ts of neutrino astronomy�,

Spa
e S
i. Rev. 49 (1989) 259�310 and R. Calabrese et al., �Primordial bla
k hole dark matter evaporating on the

neutrino �oor,� Phys. Lett. B 829 (2022) 137050, arXiv:2106.02492 [hep-ph℄ (right panel ).℄
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1 Intera
tion Lagrangian and weak 
urrents.

In the Standard Model (SM), the 
harged and neutral 
urrent neutrino intera
tions with

leptons are des
ribed by the following parts of the full Lagrangian:

LCC

I (x) = − g

2
√

2
jCCα (x)Wα(x) + H.
. and LNC

I (x) = − g

2 cos θ

W

jNCα (x)Zα(x).

Here g is the SU(2) (ele
tro-weak) gauge 
oupling 
onstant

g2 = 4
√

2m2
WGF , g sin θ

W

= |e|,

and θ

W

is the weak mixing (Weinberg) angle, (sin2 θ

W

(MZ) = 0.23120).

The leptoni
 
harged 
urrent and neutrino neutral 
urrent are given by the expressions:

jCCα (x) = 2
∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNCα (x) =
∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

Phenomenologi
ally, the 
harged and neutral 
urrents may in
lude (yet unknown) heavy

neutrinos and 
orresponding heavy 
harged leptons. The left- and right-handed fermion �elds

are de�ned as usually:





νℓ,L(x) = PLνℓ(x), ℓL(x) = PLℓ(x), PL ≡ 1

2
(1 − γ5),

νℓ,R(x) = PRνℓ(x), ℓL(x) = PRℓ(x), PR ≡ 1

2
(1 + γ5).
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Physi
al meaning of 
hiral proje
tions for a massive Dira
 fermion.

(p̂−m)ψ = 0 =⇒
(
p0 −m −pσ

pσ −p0 −m

)(
φ

χ

)
= 0 =⇒

{
(pσ)χ = (p0 −m)φ,

(pσ)φ = (p0 +m)χ.

⇓

ψL = PLψ =
1

2

(
φ− χ
χ− φ

)
=

(
φ−

−φ−

)

ψR = PRψ =
1

2

(
φ+ χ

φ+ χ

)
=

(
φ+

φ+

) where φ± =
1

2

(
1± pσ

p0 +m

)
φ.

Let p0 ≫ m and thus 1− |v| ≪ 1, where v = p/p0. Then, dire
ting v along the z axis we obtain

φ− ≃ 1− σ3

2
φ =

(
0 0

0 1

)(
φ→

φ←

)
=

(
0

φ←

)
, φ+ ≃ 1 + σ3

2
φ =

(
1 0

0 0

)(
φ→

φ←

)
=

(
φ→

0

)
.

Reminder: Pauli & Dira
 matri
es

σ0 ≡ 1 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

γ0 = γ0 =

(
σ0 0

0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 =

(
0 σ0

σ0 0

)
.
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Note that the kineti
 term of the Lagrangian in
ludes both L and R handed neutrinos and moreover,

it 
an in
lude other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γαν(x)] ≡ i

2
ν(x)
←→
∂ ν(x) =

i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)

νµ(x)

ντ (x)

.

.

.




, νL/R(x) =




νe,L/R(x)

νµ,L/R(x)

ντ,L/R(x)

.

.

.




=
1∓ γ5

2




νe(x)

νµ(x)

ντ (x)

.

.

.




.

Neutrino 
hirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respe
t to the global gauge

transformations

νℓ(x)→ eiΛℓνℓ(x), ℓ(x)→ eiΛℓℓ(x) with Λℓ = 
onst.

By Noether's theorem this leads to 
onservation of the individual lepton �avor numbers (more rarely


alled lepton �avor 
harges) Lℓ. It is agreed that

Lℓ(ℓ−, νℓ) = +1, Lℓ(ℓ+, νℓ) = −1, ℓ± = e±, µ±, τ±, et
.

Lepton �avor 
onservation is not the 
ase for massive neutrinos.

There are two fundamentally di�erent kinds of neutrino mass terms: Dira
 and Majorana.
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2 Dira
 neutrinos

The 
onventional Dira
 mass term for a single spinor �eld ψ(x) is well known:

−mψ(x)ψ(x) = −m
[
ψRψL + ψLψR

]
= −mψR(x)ψL(x) + H.
.

(the identities ψLψL = ψRψR = 0 and (ψRψL)† = ψLψR are used here).

The most general extension to the N -generation Dira
 neutrino 
ase reads:

L

D

(x) = −νR(x)M

D

νL(x) + H.
.,

where M

D

is a nonsingular [to ex
lude massless 
ase℄ 
omplexN ×N matrix.

In general, N ≥ 3 sin
e the 
olumn νL may in
lude both a
tive and sterile

neutrino �elds whi
h do not enter into the standard 
harged and neutral 
urrents.

Any nonsingular 
omplex matrix 
an be diagonalized by means of an appropriate bi-unitary

transformation

M

D

= ṼmV
†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V and Ṽ are unitary matri
es and mk ≥ 0.
=⇒ L

D

(x) = −ν ′R(x)mν′L(x) + H.
. = −ν′(x)mν′(x) = −
N∑

k=1

mkνk(x)νk(x),

where the new �elds νk are de�ned by

ν ′L(x) = V
†νL(x), ν′R(x) = Ṽ

†νR(x), ν ′(x) = (ν1, ν2, . . . , νN )T .

The �elds ν′R(x) do not enter into LI =⇒ the matrix Ṽ remains out of play...
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Sin
e VV† = V†V = 1 and Ṽ†Ṽ = ṼṼ† = 1, the neutrino kineti
 term in the Lagrangian is

transformed to

L0 =
i

2

[
ν′L(x)

←→
∂ ν′L(x) + ν′R(x)

←→
∂ ν ′R(x)

]
=
i

2
ν′(x)

←→
∂ ν ′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x).

⇓

νk(x) is the �eld of a Dira
 neutrino with the mass mk and the �avor LH neutrino �elds νℓ,L(x)

involved into the SM weak lepton 
urrents are linear 
ombinations of the LH 
omponents of the

�elds of the neutrinos with de�nite masses:

νL = Vν ′L or νℓ,L =
∑

k

Vℓkνk,L.

The matrix V is referred to as the Ponte
orvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing

matrix while the matrix Ṽ is not honored with a personal name.

Quark-lepton 
omplementarity (QLC): Of 
ourse the PMNS matrix it is not the same as the CKM

(Cabibbo-Kobayashi-Maskawa) quark mixing matrix. However the PMNS and CKM matri
es may be,

in a sense, 
omplementary to ea
h other.

The QLC means that in the same (PDG) parametrizations the sums of (small) quark and (large) lepton

mixing angles are almost (i.e., within errors) equal to π/4 for (ij) = (12) and (23):

θCKM12 + θPMNS

12 = (46.49 ± 0.77)◦, θCKM23 + θPMNS

23 = (44.48 ± 1.10)◦, sum = (90.97 ± 1.34)◦.

The origin of the data (but not QLC) will be explained below.
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2.1 Parametrization of mixing matrix for Dira
 neutrinos.

It is well known that a 
omplex n× n unitary matrix depends on n2

real parameters.

The 
lassi
al result by Fran
is Murnaghan [F. D. Murnaghan, �The unitary and rotation groups (Le
tures on

Applied Mathemati
s, Volume 3),� Spartan Books, Washington, D.C. (1962)℄ states that any n× n matrix from

the unitary group U(n) 
an be presented as produ
t of the diagonal phase matrix

Γ = diag

(
eiα1 , eiα2 , . . . , eiαn

)
,


ontaining n phases αk, and n(n− 1)/2 matri
es U whose main building blo
ks have the form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0

0 e+iφ

)(
cos θ sin θ

− sin θ cos θ

)

︸ ︷︷ ︸
Euler rotation

(
1 0

0 e−iφ

)
.

Therefore any n× n unitary matrix 
an be parametrized in terms of

n(n− 1)/2 �angles� (taking values within [0, π/2])

and

n(n+ 1)/2 �phases� (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matri
es is of this type.

IMPORTANT: Murnaghan's fa
torization method does not spe
ify the sequen
e of the

building blo
ks Γ and U.
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One 
an redu
e the number of the phases further by taking into a

ount that the Lagrangian with

the Dira
 mass term is invariant with respe
t to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibkνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk, with Λ = 
onst. (1)

Therefore 2N − 1 phases are unphysi
al and the number of physi
al (Dira
) phases is

n

D

=
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

n

D

(2) = 0, n

D

(3) = 1, n

D

(4) = 3, . . .

• The global symmetry (1) leads to 
onservation of the lepton 
harge

L =
∑

ℓ=e,µ,τ,...

Lℓ


ommon to all 
harged leptons and all neutrinos νk. However

The individual lepton �avor numbers Lℓ are no longer 
onserved.

• The nonzero physi
al phases lead to the CP (and T ) violation in the neutrino se
tor.

a

This 
ould

have important impli
ations for parti
le physi
s and 
osmology (leptogenesis, baryogenesis,...).

a

The proof 
an be found, e.g., in Se
. 4.6 of C. Giunti and C. W. Kim, �Fundamentals of neutrino physi
s

and astrophysi
s� (Oxford University Press In
., New York, 2007) or in Se
. 6.3 of S. M. Bilenky, �Introdu
tion

to the physi
s of massive and mixed neutrinos� (2nd ed.), Le
t. Notes Phys. 947 (2018) 1�276. Note the

di�eren
es in notation and in representation for the matrix C.
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2.1.1 Three-neutrino 
ase.

In the most interesting (today!) 
ase of three lepton generations one de�nes the orthogonal rotation

matri
es in the ij-planes whi
h depend upon the mixing angles θij :

O12 =




c12 s12 0

−s12 c12 0

0 0 1




︸ ︷︷ ︸

Solar matrix

, O13 =




c13 0 s13

0 1 0

−s13 0 c13




︸ ︷︷ ︸

Rea
tor matrix

, O23 =




1 0 0

0 c23 s23

0 −s23 c23




︸ ︷︷ ︸

Atmospheri
 matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dira
 phase fa
tor:

Γ

D

= diag

(
1, 1, eiδ

)
.

The parameter δ is 
ommonly referred to as the Dira
 CP -violation/violating phase.

Finally, by applying Murnaghan's fa
torization, the PMNS matrix for the Dira
 neutrinos 
an be

parametrized as

V

(D)

= O23Γ

D

O13Γ †

D

O12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 .

⋆ This is the Chau�Keung presentation advo
ated by the PDG for both CKM and PMNS matri
es.

⋆ Remember that the positioning of the fa
tors in V

(D)

is not �xed by the Murnaghan (or any other)

algorithm and is just a subje
t-matter of agreement.

⋆ Today we believe we know a lot about the entries of this matrix.
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2.1.2 Lepton numbers are not 
onserved, so what of it?.

Sin
e the Dira
 mass term violates 
onservation of the individual lepton numbers, Le, Lµ, Lτ , it

allows many lepton family number violating pro
esses, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

However the (ββ)0ν de
ay or the kaon semileptoni
 de
ays like

K+ → π− + µ+ + e+, K− → π+ + µ− + e−,

et
. are still forbidden as a 
onsequen
e of the total lepton 
harge 
onservation.

Current limits on the simplest lepton family number violating µ and τ de
ays (2020).

a

De
ay Modes Fra
tion C.L. De
ay Modes Fra
tion C.L.

µ− → e−νeνµ < 1.2% 90% τ− → e−γ < 3.3× 10−8

90%

µ− → e−γ < 4.2× 10−13

90% τ− → µ−γ < 4.4× 10−8

90%

µ− → e−e+e− < 1.0× 10−12

90% τ− → e−π0 < 8.0× 10−8

90%

µ− → e−2γ < 7.2× 10−11
90% τ− → µ−π0 < 1.1× 10−7

90%

These limits are not quite as impressive as might appear at �rst glan
e.

a

P. A. Zyla et al. (Parti
le Data Group), �Review of Parti
le Physi
s�, PTEP 2020 (2020) 083C01.
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History & future of
   LFV experiments

1940 1960 1980 2000 2020 Year

90
%

–C
.L

. 
b
ou

n
d
 

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

µ eγ

µ 3e

µN eN

τ eγ

τ 3µ10–16

SINDRUM SINDRUM II

MEG

MEG II

Mu3e I

Mu3e II

Comet II/Mu2e

DeeMee/
Comet I

Pontecorvo (1947)

[From N. Berger, �Charged lepton �avour violation experiments,� talk at the Z�uri
h Phenomenology Workshop, January

2015. For details, see W. J. Mar
iano, T. Mori, and J. M. Roney, �Charged lepton �avor violation experiments,� Ann.

Rev. Nu
l. Part. S
i. 58 (2008) 315�341. Is not yet updated!℄
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2.1.3 Neutrinoless muon de
ay in SM.

The Lµ and Le violating muon de
ay µ− → e−γ is

allowed if V ∗µkVek 6= 0 for k = 1, 2 or 3. The 
orresponding

Feynman diagrams in
lude W loops and thus the de
ay

width is strongly suppressed by the neutrino to W boson

mass ratios:

R =
Γ
(
µ− → e−γ

)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗µkVek
m2

k

m2
W

∣∣∣∣∣

2

.

Sin
e mk/mW ≈ 1.244× 10−12 (mk/0.1 eV), the ratio


an be estimated as

R ≈ 5.22× 10−52

∣∣∣∣∣
∑

k

V ∗µkVek

(
mk

0.1 eV

)2

∣∣∣∣∣

2

. 8× 10−54,

while the 
urrent experimental upper limit is (at least!) 40

orders of magnitude larger (see Table in p. 16):

R

(exp)

< 4.2× 10−13

at 90% C.L. (NO GO!)

Some nonstandard models are mu
h more optimisti
.

We must deeply appre
iate the os
illation phenomenon

whi
h makes the miserable ν mass e�e
t measurable.

W W

γ

µ eν
kV

µk Vek

∗

Wγ

µ eν
kV

µk Vek

∗

W γ

µ eν
kV

µk Vek

∗
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2.2 Nu
lear beta de
ay.

The method of measurement of the (anti)neutrino mass through the investigation of the high-energy

part of the β-spe
trum was proposed by Perrin (1933) and Fermi (1934).

The �rst experiments on the measurement of the neutrino mass with this method have been done by

Curran, Angus and Co
k
roft (1948) and Hanna and Ponte
orvo (1949).

The energy spe
trum of ele
trons in the de
ay (A,Z)→ (A,Z + 1) + e− + νe is

a

dΓ

dT
=
∑

k

|Vek|2 dΓk

dT
, (2)

dΓk

dT
=

(GF cos θC)2

2π3
ppk (T +me) (Q− T ) |M|2 F (T, Z)θ (Q− T −mk). (3)

Here GF is the Fermi 
onstant, θC is the Cabibbo angle, me, p and T are the mass, magnitude of

the momentum and kineti
 energy of the ele
tron, respe
tively,

pk =
√
E2

k −m2
k =

√
(Q− T )2 −m2

k and Q = Ek + T = EA,Z −EA,Z+1 −me

are, respe
tively, the magnitude of the neutrino momentum and energy released in the de
ay (the

endpoint of the β spe
trum in 
ase mk = 0),M is the nu
lear matrix element, and F (T, Z) is the

Fermi fun
tion, whi
h des
ribes the Coulomb intera
tion of the �nal-state nu
leus and ele
tron.

The step fun
tion in Eq. (3) ensures that a neutrino state νk is only produ
ed if its total energy is

larger than its mass: Ek = Q− T ≥ mk.

a

The re
oil of the �nal nu
leus and radiative 
orre
tions (lu
kily small) are negle
ted.

19



As it is seen from Eq. (2), the largest distortion of the β-spe
trum due to neutrino masses 
an be

observed in the region

Q− T ∼ mk. (4)

However, for max (mk) ≃ 0.1 eV only a very small part (about 10−(13−14)

) of the de
ays give


ontribution to the region (4). This is the reason why in the analysis of the results of the

measurement of the β-spe
trum a relatively large part of the spe
trum is used.

a

Taking this into a

ount and applying unitarity of the mixing matrix, we 
an write

∑

k

|Vek|2 pk ≈
∑

k

|Vek|2 (Q− T )

[
1− m2

k

2(Q− T )2

]
⇐= 4E2

k ≫ m2
k

= (Q− T )

[
1− 1

2(Q− T )2

∑

k

|Vek|2 m2
k

]
⇐=

∑

k

|Vek|2 = 1

≈
√

(Q− T )2 −m2
β ,

where the e�e
tive neutrino mass mβ is de�ned by

m2
β =

∑

k

|Vek|2 m2
k

and it was assumed that

max
k

(
m2

k

)
≪ 4(Q− T )2.

a

For example, in the Mainz tritium experiment (see below) the last 70 eV of the spe
trum is used.
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Finally, the β-spe
trum that is used for �tting

the data 
an be presented as

dΓ

dT
∝ p (T +me) |M|2 F (T )K2(T ),

where we have de�ned the Kurie fun
tion

(sometimes 
alled Fermi-Kurie fun
tion)

K(T )∝
√

dΓ/dT

p (T +me) |M|2 F (T )

≈ (Q− T )

[
1− m2

β

(Q− T )2

]1/4

developed by Franz Newell Devereux Kurie.

Unfortunately, the real-life situation is

mu
h more 
ompli
ated.

Kurie plot for allowed pro
esses is a sensitive test of mβ ,

while the �rst order forbidden pro
esses should have a

distorted Kurie plot.

In an a
tual experiment, the measurable quantity is a sum of β spe
tra, leading ea
h with probability

Pn = Pn(E0 − Vn − E) to a �nal state n of ex
itation energy Vn:

dΓ (T,Q)

dT
7−→

∑

n

Pn (E0 − Vn −E)
dΓ (T,E0 − Vn)

dT
.

Here E0 = Q− E the ground-state energy and E is the re
oil energy of the daughter nu
leus.
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2.2.1 Tritium beta de
ay.

An important issue is the de
ay of

mole
ular tritium T2 →
(

3

HeT

)+
+ e− + νe.

Considering the most pre
ise dire
t

determination of the mass di�eren
e

m(T)−m
(

3

He

)
= (18590.1± 1.7) eV/c2

and taking into a

ount the re
oil and

apparative e�e
ts (these are taken for the

Mainz experiment) one derives an endpoint

energy of the mole
ular ion

(
3

HeT

)+

ground

state:

E0 = (18574.3± 1.7) eV.

The ex
itation spe
trum is shown in the

�gure. The �rst group 
on
erns rotational and

vibrational ex
itation of the mole
ule in its

ele
troni
 ground state; it 
omprises a fra
tion

of Pg = 57.4% of the total rate.

Ex
itation spe
trum of the daughter mole
ular ion(
3

HeT

)+

in β de
ay of mole
ular tritium.

For more details, see C. Kraus et al., �Final results from phase II of the Mainz neutrino mass sear
h in tritium

β de
ay,� Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056.
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m
  
 (

eV
/c

  
)

2
β

Publ. year

Curran, Angus & Cockroft

Hanna & Pontecorvo

Langer & Moffat
Hamilton, Alford & Gross

Bergkvist

ITEP (1)

ITEP (2)

Zurich

INS (Tokyo)
Los Alamos

Mainz

Troitsk

Troitsk
Mainz Troitsk

Karlsruhe

arXiv:1909.06048 [hep-ex]

KATRIN

© 1948 Nature Publ. Group

Nature 162 (1948) 302-303

Progress of the neutrino mass measurements in

tritium β de
ay, in
luding the �nal Mainz phase II,

Troitsk, and KATRIN upper limits (see below).

[The 
ompilation is taken from V. M. Lobashev, �Dire
t sear
h

for mass of neutrino,� in Pro
eedings of the 18th International

Conferen
e on Physi
s in Collision (�PIC 98�), Fras
ati, June 17�

19, 1998, pp. 179�194 and supplemented with the re
ent data.℄

⊳ The history of the sear
h for the

neutrino mass in the tritium β de
ay


ounts more than 60 years. In 1980,

the steady improvement of the upper

limit was suddenly speeded up by a

report of the ITEP group (Mos
ow)

on the observation of the nonzero

neutrino mass e�e
t in the β-spe
trum

in the valine mole
ule (C5H9T2NO2).

The reported result was

a

14 ≤ mβ ≤ 46 eV/c2 (99% C.L.)

This resear
h stimulated more than

20 experimental proposals with an

intention to 
he
k this 
lime. Alas!. . .
in several years the experimental groups

from Z�uri
h, Tokyo, Los Alamos, and

then Livermore refuted the ITEP result.

a

V. A. Lyubimov, E. G. Novikov,

V. Z. Nozik, E. F. Tretyakov, and V. S. Kosik,

�An estimate of the νe mass from the β-

spe
trum of tritium in the valine mole
ule,�

Phys. Lett. B 94 (1980) 266�268 (∼ 500


itations in InSPIRE! by the end of 2021).
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The top �gure shows the data points

from the tail of the β-spe
trum measured

in the Los Alamos tritium experiment


ompared with the expe
ted values (the

straight line) for mβ = 30 eV. The data

wander from the line, ruling out the

possibility of a 30-eV neutrino.

The bottom �gure shows the same data

points 
ompared with the expe
tation for

mβ = 0. While the data 
learly favor a

neutrino mass of zero, the best �t is

a
tually for a slightly negativemβ . (Note

that in the bottom plot, the data points

lie, on average, slightly above the line, so

this is not a perfe
t �t.)

Both plots display �residuals,� whi
h

indi
ate how many standard deviations

ea
h data point is from a parti
ular

hypothesis.

18300
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2.5

Mass = 30 eV

Mass = 0 eV

0

18400 18500

Energy (eV)

R
e
s
id

u
a
l 
(S

D
)

18600 18700

Did the neutrino weigh 30 ele
tron volts?

[Borrowed from T. J. Bowles and R. G. H. Robertson, �Tritium beta de
ay and the sear
h for neutrino mass,� Los

Alamos S
i. 25 (1997) 6�11.℄
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Publ. year

2
m

  
 (

eV
 /

c
  

)
2

4

β
PHYSICAL SECTOR

Mainz 1998-2001 final (2005):

m  = -0.6   2.2       2.1     eV /c
β

Troitsk 1994-2004 reanalised (2011):

m  = -0.67   1.89       1.68     eV /c
β

2+
−  stat syst

+
−

4

2+
−  stat syst

+
−

4

2

2

Bejing

Livermore
Los Alamos
Mainz
Tokyo
Troitsk
Troitsk (step fcn)
Troitsk (reanalized)
Zurich..

~~
~~

KATRIN

KATRIN 2nd compaign (2021):

m  = 0.26   0.34 eV /c 
β

2 42 +
− At last!

KATRIN 2021

⊳ The �gure shows the results on them2
β

measurements in the tritium β de
ay

experiments reported after 1990.

The already �nished experiments at

Los Alamos, Z�uri
h, Tokyo, Beijing and

Livermore used magneti
 spe
trometers,

while the experiments at Troitsk (ν mass),

Mainz, and Karlsruhe (KATRIN) are using

high-resolution ele
trostati
 �lters with

magneti
 adiabati
 
ollimation.

The progress in the observable mβ of

the latest Mainz, Troitsk, and KATRIN

results as 
ompared to the most sensitive

earlier experiments approa
hes two orders

of magnitude.

[The �gure in this slide in
ludes the data from C. Kraus et al., Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056;

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003, arXiv:1108.5034 [hep-ex℄; M. Aker et al., Phys. Rev. Lett. 123

(2019) 221802, arXiv:1909.06048 [hep-ex℄ M. Aker et al., arXiv:2105.08533 [hep-ex℄. ℄

The negative m2
β most probably was �instrumental�. After KATRIN (2021), only a very small spa
e remains

for fans of heterodox models with ta
hyoni
 neutrino states (more generally � superpositions of bradyon-luxon-

ta
hyon states), pseudota
hyoni
 (m2
ν < 0, v = E/p), or perhaps superbradyoni
 (mν > 0, v > 1) neutrinos.
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2.2.2 Summary of the KATRIN result from the �rst s
ien
e run (KNM1).

The best �t value of the e�e
tive neutrino mass square was found to be

a

m2
β =

(
−1.0+0.9

−1.1

)

eV

2.

This result 
orresponds to a 1σ statisti
al

�u
tuation to negative values of m2
β

possessing a p-value of 0.16. The total

un
ertainty budget of m2
β is largely dominated

by σ

stat

(0.97 eV

2

) as 
ompared to σ

syst

(0.32 eV

2

). These un
ertainties are smaller by

a fa
tor of 2 and 6, respe
tively, 
ompared to

the �nal results of Troitsk and Mainz.

KATRIN data with 1σ errorbars   50 

Fit result

18535               18555               18575                18595               18615

Retarding energy (eV)

C
ou

n
t 

ra
te

 (
cp

s)

1

10

Spectrum of electrons over a 90 eV-wide interval
from all 274 tritium scans and best-fit model

The methods of Lokhov and Tka
hov (LT) and of Feldman and Cousins (FC) are then used to


al
ulate the upper limit on the absolute mass s
ale of neutrino:

mβ < 1.1 eV at 90% C.L. (LT), mβ < 0.8 (0.9) eV at 90 (95)% C.L. (FC).

The LT value (the 
entral result of the experiment) 
oin
ides with the KATRIN sensitivity. It is based

on a purely kinemati
 method and improves upon previous works by almost a fa
tor of two after a

measuring period of only four weeks while operating at redu
ed 
olumn density.

After 1000 days of data taking at nominal 
olumn density and further redu
tions of systemati
s the

Karlsruhe Tritium Neutrino experiment KATRIN will rea
h a sensitivity of 0.2 eV (90% C.L.) on mβ .

a

M. Aker et al., �An improved upper limit on the neutrino mass from a dire
t kinemati
 method by KATRIN,�

Phys. Rev. Lett. 123 (2019) 221802, arXiv:1909.06048 [hep-ex℄.
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2.2.3 Summary of the KATRIN result from the se
ond s
ien
e run (KNM2).

In the 2nd physi
s run, the sour
e a
tivity was in
reased by a fa
tor of 3.8 and the ba
kground was

redu
ed by 25% with respe
t to the 1st 
ampaign.

a

A sensitivity on mβ of 0.7 eV at 90% C.L. was

rea
hed. This is the �rst sub-eV sensitivity from a dire
t neutrino-mass experiment.

β

P
H

Y
S
IC

A
L
 S

E
C

T
O

R
The best �t to the spe
tral data yields

mβ = 0.26± 0.34 eV, resulting in an upper

limit of mβ < 0.9 eV (90% C.L.), using

the Lokhov-Tka
hov method. The Feldman-

Cousins te
hnique yields the same limit. The

resulting Bayesian limit at 90% C.L. is

mβ < 0.85 eV.

A simultaneous �t of both KNM1 and KNM2

data sets yieldsmβ = 0.1± 0.3 eV, resulting an

improved limit of mβ < 0.8 eV (90% C.L.).

As both data sets are statisti
s-dominated,


orrelated systemati
 un
ertainties between

both 
ampaigns are negligible.

⊳ The �gure displays the evolution of

best-�t mβ results from histori
al ν-mass

measurements (
.f. p. 25).

mβ < 0.9 eV at 90 % C.L. (KNM2), mβ < 0.8 eV at 90 % C.L. (KNM1+KNM2).

a

M. Aker et al., �First dire
t neutrino-mass measurement with sub-eV sensitivity�, Nature Phys. 18 (2022)

160�166, arXiv:2105.08533 [hep-ex℄; see also arXiv:2203.08059 [nu
l-ex℄, submitted to Nature Physi
s.

27



3 Majorana neutrinos.

The 
harge 
onjugated bispinor �eld ψc

is de�ned by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,

where C is the 
harge-
onjugation matrix whi
h satis�es the 
onditions

CγT
αC
† = −γα, CγT

5 C
† = γ5, C† = C−1 = C, CT = −C,

and thus 
oin
ides (up to a phase fa
tor) with the inversion of the axes x0

and x2: C = γ0γ2.

Clearly the 
harged fermion �eld ψ is di�erent from the 
harge-
onjugated

�eld ψc

but a neutral fermion �eld ν 
an 
oin
ide with the 
harge-
onjugated one νc

. In other words:

for a neutral fermion (neutrino, neutralino) �eld ν(x) the following 
ondition is not forbidden:

a

νc(x) = ν(x) (Majorana 
ondition) ⇐⇒ Majorana neutrino and antineutrino 
oin
ide!

A few more details: In the 
hiral representation

ν =

(
φ

χ

)
, νc = CνT =

(
−σ2χ∗

+σ2φ∗

)
. =⇒

{
φ = −σ2χ

∗,

χ = +σ2φ
∗ =⇒ φ+ χ = σ2 (φ− χ)∗.

The Majorana neutrino is two-
omponent, i.e., it is de�ned by only one 
hiral proje
tion. Then (
.f. p. 9)

νL = PLν =

(
φ− χ

χ− φ

)

and νR = PRν =

(
φ+ χ

φ+ χ

)
= νc

L. =⇒ ν = νL + νR = νL + νc
L.

a

The simplest generalization of the Majorana 
ondition, νc(x) = eiϕν(x) (ϕ = 
onst), is not very interesting.
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The Majorana mass term in the general N -neutrino 
ase is [Gribov & Ponte
orvo (1969)℄:

L

M

(x) = −1

2
νc

L(x)M

M

νL(x) + H.
.,

Here M

M

is a N ×N 
omplex nondiagonal matrix and, in general, N ≥ 3.

It 
an be proved that the M

M

should be symmetri
, M
T

M

= M

M

. Assuming for simpli
ity that its

spe
trum is non-degenerated, the mass matrix 
an be diagonalized by means of the following

transformation [Bilenky & Pet
ov (1987)℄

M

M

= V
∗
mV

†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V is a unitary matrix and mk ≥ 0. Therefore

L

M

(x) = −1

2

[
(ν′L)c

mν ′L + ν ′Lm(ν′L)c
]

= −1

2
ν′mν′ = −1

2

N∑

k=1

mkνkνk,

ν ′L = V
†νL, (ν′L)c = C

(
ν′L
)

T , ν′ = ν′L + (ν′L)c.

The last equality means that the �elds νk(x) are Majorana neutrino �elds. Considering that the

kineti
 term in the neutrino Lagrangian is transformed to

a

L0 =
i

2
ν ′(x)

←→
∂ ν′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x),

one 
an 
on
lude that νk(x) is the �eld with the de�nite mass mk.

a

This also explains the origin of the fa
tor 1/2 in the Majorana mass term.
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The �avor LH neutrino �elds νℓ,L(x) present in the standard weak lepton 
urrents are linear


ombinations of the LH 
omponents of the �elds of neutrinos with de�nite masses:

νL = Vν′
L or νℓ,L =

∑

k

Vℓkνk,L.

Of 
ourse neutrino mixing matrix V is not the same as in the 
ase of Dira
 neutrinos.

There is no global gauge transformations under whi
h the Majorana mass term (in its most

general form) 
ould be invariant. This implies that there are no 
onserved lepton 
harges that


ould allow us to distinguish Majorana νs and νs. In other words,

Majorana neutrinos are truly neutral fermions.

3.1 Parametrization of mixing matrix for Majorana neutrinos.

Sin
e the Majorana neutrinos are not rephasable, there may be a lot of extra phase fa
tors in

the mixing matrix. The Lagrangian with the Majorana mass term is invariant with respe
t to

the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk
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Therefore N phases are unphysi
al and the number of the physi
al phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2︸ ︷︷ ︸

Dira
 phases

+ (N − 1)︸ ︷︷ ︸

Majorana phases

= n

D

+ n

M

;

n

M

(2) = 1, n

M

(3) = 2, n

M

(4) = 3, . . .

In fa
t all phases are Majorana and the above notation is provisional and unorthodox.

In the 
ase of three lepton generations one de�nes the diagonal matrix with the extra phase fa
tors:

Γ

M

= diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are 
ommonly referred to as the Majorana CP -violation

phases. Then the PMNS matrix 
an be parametrized as

V

(M)

= O23Γ

D

O13Γ †

D

O12Γ

M

= V

(D)

Γ

M

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






eiα1/2 0 0

0 eiα2/2 0

0 0 1


 ,

Neither Lℓ nor L =
∑

ℓ
Lℓ is now 
onserved allowing a lot of new pro
esses, for example,

τ− → e+(µ+)π−π−, τ− → e+(µ+)π−K−, π− → µ+νe, K+ → π−µ+e+

, K+ → π0e+νe,

D+ → K−µ+µ+

, B+ → K−e+µ+

, Ξ− → pµ−µ−, Λ+
c → Σ−µ+µ+

, et
.

Needless to say that no one was dis
overed yet [see RPP℄ but (may be!?) the (ββ)0ν de
ay.

The following se
tion will dis
uss this issue with some detail.
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3.2 Neutrinoless double beta de
ay.

The theory with Majorana neutrinos allows the de
ay

(A,Z)→ (A,Z + 2) + 2e− [0νββ ≡ (ββ)0ν ]

with ∆L = 2. The de
ay rate for this pro
ess is expressed as

follows:

[
T 0ν

1/2

]−1
= G0ν

Z |mββ |2
∣∣M0ν

F

− (gA/gV )2M0ν

GT

∣∣2,

where G0ν
Z is the two-body phase-spa
e fa
tor in
luding


oupling 
onstant, M0ν

F/GT

are the Fermi/Gamow-Teller

nu
lear matrix elements. The 
onstants gV and gA are the

ve
tor and axial-ve
tor relative weak 
oupling 
onstants,

respe
tively. The 
omplex parameter mββ is the e�e
tive

Majorana ele
tron neutrino mass given by

mββ =
∑

k

V 2
ekmk =

∑

k

|Vek|2eiφkmk

= |Ve1|2 m1 + |Ve2|2 m2e
iφ2 + |Ve3|2 m3e

iφ3 .

Here φ1 = 0, φ2 = α2 − α1 (pure Majorana phase) and

φ3 = −(α2 + 2δ) (mixture of Dira
 and Majorana CP -

violation phases).
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W
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W
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The ele
tron sum energy spe
trum

of the (ββ)2ν mode as well as of

the exoti
 modes with one or two

majorons in �nal state,

(A,Z)→ (A,Z + 2) + 2e− + χ,

(A,Z)→ (A,Z + 2) + 2e− + 2χ,

is 
ontinuous be
ause the available

energy release (Qββ) is shared

between the ele
trons and other �nal

state parti
les. In 
ontrast, the two

ele
trons from the (ββ)0ν de
ay 
arry

the full available energy, and hen
e

the ele
tron sum energy spe
trum

has a sharp peak at the Qββ value.

This feature allows one to distinguish

the (ββ)0ν de
ay signal from the

ba
kground.

The ele
tron sum energy spe
tra 
al
ulated for the di�erent

β de
ay modes of 
admium-116.

[From Y. Zdesenko, �Colloquium: The future of double beta de
ay

resear
h,� Rev. Mod. Phys. 74 (2003) 663�684.℄

Majoron is a Nambu-Goldstone boson, � a hypotheti
al neutral pseudos
alar zero-mass parti
le whi
h 
ouples

to Majorana neutrinos and may be emitted in the neutrinoless β de
ay. It is a 
onsequen
e of the spontaneous

breaking of the global B − L symmetry.
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The 
urrently allowed ranges of

mββ observables of 0νββ de
ay is

shown as a fun
tion of the lightest

neutrino mass m0. In the 
ase of

normal (inverted) mass ordering the

ranges are shown by green (blue)


olor. The light (dark) 
olored

regions are 
omputed by taking into

a

ount (without taking a

ount)

the 
urrent 1σ un
ertainties of the

relevant mixing parameters.

Also shown are the limits on mββ


oming from KamLAND-Zen and

EXO-200 (by the light brown band

and arrow) and the bounds on m0

obtained by Plan
k.

Normal Ordering with uncertainty

Inverted Ordering with uncertainty

Normal Ordering without uncertainty

Inverted Ordering without uncertainty
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Note that the �KamLAND-Zen+EXO200� bound spans a broad band (rather than a line) be
ause of

the nu
lear matrix element un
ertainty.

It is remarkable that the e�e
t of the 1σ un
ertainties of the mixing parameters is quite small. In


ontrast, variation over the Majorana phases gives mu
h larger impa
t on allowed region of mββ , not

only produ
ing sizeable width but also 
reating a down-going bran
h at 10−3

eV . m0 . 10−2

eV for

the 
ase of the normal mass ordering due to the strong 
an
ellation of the three mass terms.

[From H. Minakata, H. Nunokawa, and A. A. Quiroga, �Constraining Majorana CP phase in the pre
ision era of


osmology and the double beta de
ay experiment,� PTEP 2015 (2015) 033B03, arXiv:1402.6014 [hep-ph℄.℄
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4 See-saw me
hanism.

4.1 Dira
-Majorana mass term for one generation.

It is possible to 
onsider mixed models in whi
h both Majorana and Dira
 mass terms are present.

For simpli
ity sake we'll start with a toy model for one lepton generation.

Let us 
onsider a theory 
ontaining two independent neutrino �elds νL and νR:




νL would generally represent any a
tive neutrino (e.g., νL = νeL),

νR 
an represents a right handed �eld unrelated to any of these or

it 
an be 
harge 
onjugate of any of the a
tive neutrinos (e.g., νR = (νµL)c

).

We 
an write the following generi
 mass term between νL and νR:

Lm = − mD νLνR︸ ︷︷ ︸

Dira
 mass term

− (1/2) [mL νLν
c
L +mR ν

c
RνR]︸ ︷︷ ︸

Majorana mass term

+H.
. (5)

⋆ As we know, the Dira
 mass term respe
ts L while the Majorana mass term violates it.

⋆ The parameter mD in Eq. (5) is in general 
omplex; to simplify matters, we'll assume it to be

real but not ne
essarily positive.

⋆ The parameters mL, and mR in Eq. (5) 
an be 
hosen real and (by an appropriate rephasing the

�elds νL and νR) non-negative, but the latter is not assumed.

⋆ Obviously, neither νL nor νR is a mass eigenstate.
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In order to obtain the mass basis we 
an apply the useful identity

νLνR = (νR)c(νL)c
(6)

The identity (6) is a parti
ular 
ase of the more general relation

ψ1Γψ2 = ψ
c
2CΓ

TC−1ψc
1,

in whi
h ψ1,2 are Dira
 spinors and Γ represents an arbitrary 
ombination of the Dira
 γ matri
es.

Relation (6) allows us to rewrite Eq. (5) as follows

Lm = −1

2
(νL, (νR)c)

(
mL mD

mD mR

)(
(νL)c

νR

)
+ H.
. ≡ −1

2
νLM (νL)c + H.
.

If (again for simpli
ity) CP 
onservation is assumed the matrix M 
an be diagonalized by the

orthogonal transformation that is rotation

V =

(
cos θ sin θ

− sin θ cos θ

)

with θ =
1

2
arctan

(
2mD

mR −mL

)
.

and we have

V
T

MV = diag(m1,m2),

where m1,2 are eigenvalues of M given by

m1,2 =
1

2

(
mL +mR ±

√
(mL −mR)2 + 4m2

D

)
.
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The eigenvalues are real if (as we assume) mD,L,R are real, but not ne
essarily positive. Let

us de�ne ζk = signmk and rewrite the mass term in the new basis:

Lm = −1

2
[ζ1 |m1| ν1L (ν1L)

c
+ ζ2 |m2| (ν2R)

c
ν2R] + H.
., (7)

The new �elds ν1L and ν2R represent 
hiral 
omponents of two di�erent neutrino states with

�masses� m1 and m2, respe
tively:

(
νL

νcR

)
= V

(
ν1L

νc2R

)
=⇒

{
ν1L= cos θ νL − sin θ νcR,

ν2R= sin θ νcL + cos θ νR.

Now we de�ne two 4-
omponent �elds

ν1 = ν1L + ζ1 (ν1L)
c

and ν2 = ν2R + ζ2 (ν2R)
c
.

Certainly, these �elds are self-
onjugate with respe
t to the C transformation:

νck = ζkνk (k = 1, 2)

and therefore they des
ribe Majorana neutrinos. In terms of these �elds Eq. (7) reads

Lm = −1

2
(|m1| ν1ν1 + |m2| ν2ν2). (8)

We 
an 
on
lude therefore that νk(x) is the Majorana neutrino �eld with the de�nite

(physi
al) mass |mk|.
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There are several spe
ial 
ases of the Dira
-Majorana mass matrix M whi
h are of 
onsiderable

phenomenologi
al importan
e, in parti
ular,

(A): M =

(
0 m

m 0

)
=⇒ |m1,2| = m, θ =

π

4

(maximal mixing).

Two Majorana �elds are equivalent to one Dira
 �eld.

A generalization |mL,R| ≪ |mD|, leads to the so-
alled

Pseudo-Dira
 neutrinos.

(B): M =

(
mL m

m mL

)
=⇒ m1,2 = mL ±mD, θ =

π

4
(maximal mixing);

(C): M =

(
0 m

m M

)

or, more generally, |mL| ≪ |mR|, mD > 0.

The see-saw

The 
ase (C) with m≪M is the simplest example of the see-saw me
hanism. It leads to two

masses, one very large, m1 ≈M , other very small, m2 ≈ −m2/M ≪ m, suppressed 
ompared to the

entries in M. In parti
ular, one 
an assume

m ∼ mℓ or mq (0.5 MeV to 200 GeV) and M ∼M

GUT

∼ 1015−16

GeV.

Then |m2| 
an ranges from ∼ 10−14
eV to ∼ 0.04 eV. The mixing between the heavy and light

neutrinos is extremely small: θ ≈ m/M ∼ 10−20 − 10−13 ≪ 1.
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If one eigenvalue goes up, the other

goes down, and vi
e versa. This is the

reason of the term see-saw...

a bit intri
ate for so simple idea...
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4.2 More neutral fermions.

A generalization of the above s
heme to N generations is almost straightforward but te
hni
ally

rather 
umbersome. Let's 
onsider it s
hemati
ally for the N = 3 
ase.

⊲ If neutral fermions are added to the set of the SM �elds, then the �avour neutrinos 
an a
quire

mass by mixing with them.

⊲ The additional fermions 
an be

a

• Gauge 
hiral singlets per family N (e.g., right-handed neutrinos) [Type I seesaw℄, or

• SU(2)× U(1) doublets (e.g., Higgsino in SUSY), or

• Y = 0, SU(2)L triplets Σ (e.g., Wino in SUSY) [Type III seesaw℄.

⊲ Addition of three right-handed neutrinos NiR leads to the see-saw me
hanism with the following

mass terms:

Lm = −
∑

ij

[
νiLM

D
ijNjR − 1

2
(NiR)c MR

ijNjR + H.
.

]
.

⊲ The above equation leads to the following 6× 6 see-saw mass matrix:

M =

(
0 mT

D

mD MR

)
.

Both mD and MR are 3× 3 matri
es in the generation spa
e.

a

Type II seesaw operates with additional SU(2)L s
alar triplets ∆.
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Similar to the one-generation 
ase we assume that the eigenvalues of MR are large in 
omparison

with the eigenvalues of mD. Then M 
an be approximately blo
k-diagonalized by an unitary

transformation:

U
†
MU = diag (M1,M2) +O

(
mDM

−1
R

)
,

where

U =



1 +
1

2
m
†
D

(
MRM

†
R

)−1
mD m

†
D

(
M
†
R

)−1

−M−1
R mD 1 +

1

2
M−1

R mDm
†
D

(
M
†
R

)−1



.

M1 ≃MR and M2 ≃ −m
T
DM

−1
R mD

The mass eigen�elds are surely Majorana neutrinos.

• Quadrati
 see-saw: If eigenvalues of MR are of the order of a large s
ale parameter M ∼M

GUT

a

[e.g., MR = M1℄ than the standard neutrino masses are suppressed:

mi ∼ m2
Di

M
≪ mDi,

Here mDi ∼ Yi〈H〉 are the eigenvalues of mD. As long as these eigenvalues (or Yukawa


ouplings Yi) are hierar
hi
al, the Majorana neutrino masses display quadrati
 hierar
hy:

m1 : m2 : m3 ∝ m2
D1 : m2

D2 : m2
D3.

a

Large M is natural in, e.g., SO(10) inspired GUT models whi
h therefore provide a ni
e framework to

understand small neutrino masses.
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• Linear see-saw: In a more spe
ial 
ase, MR = (M/MD)MD, where MD is the generi
 s
ale of

the 
harged fermion masses than

mi ∼ MDmDi

M
≪ mDi

but the hierar
hy is linear:

m1 : m2 : m3 ∝ mD1 : mD2 : mD3.

The two mentioned possibilities are, in prin
iple, experimentally distinguishable.
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Beyond this se
tion

✦ Double see-saw

∗

✦ Inverse see-saw

∗

✦ Radiative see-saw

∗

✦ SUSY & SUGRA see-saw

✦ TeV-s
ale gauged B − L symmetry

∗

✦ TeV see-saw & large extra dimensions

✦ See-saw & Dark Matter

✦ See-saw & Leptogenesis

✦ See-saw & Baryogenesis

✦ Dira
 see-saw

✦ Top (top-bottom) see-saw

✦ Cas
ade see-saw

✦ ...

∗

See Ba
kup.

Con
lusions (not really 
on�rmed)

• The �mainstream� ν mass models, de�ned as see-saw models, are 
apable of

des
ribing the atmospheri
�rea
tor�a

elerator ν os
illation data, the LMA

MSW solar neutrino solution, and 
osmologi
al limits. The SM and MSSM

may naturally be extended to in
orporate the see-saw me
hanism.

• [A �y in the ointment℄ Wealth of the models (≫ number of the authors of

the models) greatly 
ompli
ates the 
hoi
e of the best one.
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4.3 Here's what we know today (we're getting ahead of ourselves).

W
i
t
h

S
K

a
t
m

o
s
p
h
e
r
i



d
a
t
a

Normal Ordering (best �t) Inverted Ordering (∆χ2 = 7.0)

bfp ±1σ 3σ range bfp ±1σ 3σ range

sin2 θ12 0.304+0.012
−0.012 0.269→ 0.343 0.304+0.013

−0.012 0.269→ 0.343

θ12/
◦ 33.45+0.77

−0.75 31.27→ 35.87 33.45+0.78
−0.75 31.27→ 35.87

sin2 θ23 0.450+0.019
−0.016 0.408→ 0.603 0.570+0.016

−0.022 0.410→ 0.613

θ23/
◦ 42.1+1.1

−0.9 39.7→ 50.9 49.0+0.9
−1.3 39.8→ 51.6

sin2 θ13 0.02246+0.00062
−0.00062 0.02060→ 0.02435 0.02241+0.00074

−0.00062 0.02055→ 0.02457

θ13/
◦ 8.62+0.12

−0.12 8.25→ 8.98 8.61+0.14
−0.12 8.24→ 9.02

δCP/
◦ 230+36

−25 144→ 350 278+22
−30 194→ 345

∆m2
21

10−5

eV

2 7.42+0.21
−0.20 6.82→ 8.04 7.42+0.21

−0.20 6.82→ 8.04

∆m2
3ℓ

10−3

eV

2 +2.510+0.027
−0.027 +2.430→ +2.593 −2.490+0.026

−0.028 −2.574→ −2.410

Three-�avor os
illation parameters from a re
ent �t to global data (�NuFIT 5.1�) performed by the

NuFIT team. Note that ∆m2
3ℓ ≡ ∆m2

31 > 0 for NO and ∆m2
3ℓ ≡ ∆m2

32 < 0 for IO.

[See I. Esteban et al. (The NuFIT team), �The fate of hints: updated global analysis of three-�avor neutrino os
illations,�

JHEP09(2020)178, arXiv:2007.14792 [hep-ph℄. Present update (O
tober 2021) is from 〈 http://www.nu-�t.org/ 〉.℄
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List of data used in the NuFIT 5.1 analysis (O
tober 2021)

Solar experiments:

Homestake 
hlorine total rate (1 dp), Gallex & GNO total rates (2 dp), SAGE total rate (1 dp), SK-I full

energy and zenith spe
trum (44 dp), SK-II full energy and day/night spe
trum (33 dp), SK-III full

energy and day/night spe
trum (42 dp), SK-IV 2970-day day-night asymmetry and energy spe
trum

(24 dp), SNO 
ombined analysis (7 dp), Borexino Phase-I 741-day low-energy data (33 dp), Borexino

Phase-I 246-day high-energy data (6 dp), Borexino Phase-II 408-day low-energy data (42 dp).

Atmospheri
 experiments:

I
eCube/DeepCore 3-year data (64 dp), SK-I�IV 364.8 kiloton years + χ2
map.

Rea
tor experiments:

KamLAND separate DS1, DS2, DS3 spe
tra with Daya-Bay rea
tor νe �uxes (69 dp), Double-Chooz

FD/ND spe
tral ratio, with 1276-day (FD), 587-day (ND) exposures (26 dp), Daya-Bay 1958-day

EH2/EH1 and EH3/EH1 spe
tral ratios (52 dp), RENO 2908-day FD/ND spe
tral ratio (45 dp).

A

elerator experiments:

MINOS 10.71 PoT20 νµ-disappearan
e data (39 dp), MINOS 3.36 PoT20 νµ-disappearan
e data

(14 dp), MINOS 10.60 PoT20 νe-appearan
e data (5 dp), MINOS 3.30 PoT20 νe-appearan
e (5 dp),

T2K 19.7 PoT20 νµ-disappearan
e data (35 dp), T2K 19.7 PoT20 νe-appearan
e data (23 dp for the

CCQE and 16 dp for CC1π samples), T2K 16.3 PoT20 νµ-disappearan
e data (35 dp), T2K

16.3 PoT20 νe-appearan
e data (23 dp), NOvA 13.6 PoT20 νµ-disappearan
e data (76 dp), NOvA

13.6 PoT20 νe-appearan
e data (13 dp), NOvA 12.5 PoT20 νµ-disappearan
e data (76 dp), NOvA

12.5 PoT20 νe-appearan
e data (13 dp).

Here dp = data point(s), PoT20 = 1020

PoT (Protons on Target), and EH = Experiment Hall.
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4.3.1 Neutrino os
illation parameter plot.

The regions of neutrino squared-mass splitting

∆m2 =
∣∣∆m2

ij

∣∣ =
∣∣m2

j −m2
i

∣∣

and tan2 θ (where θ is one of the mixing angles

θij 
orresponding to a parti
ular experiment)

favored or ex
luded by various experiments.

Contributed to RPP-2018

a

by Hitoshi Murayama

(University of California, Berkeley).

Figure in
ludes the most rigorous results from

before 2018, but data from many earlier

experiments (e.g., BUST, NUSEX, Fr�ejus, IMB,

Kamiokande, MACRO, SOUDAN2) are ignored.

a

M. Tanabashi et al. (Parti
le Data Group), �Review

of Parti
le Physi
s�, Phys. Rev. D 98 (2018) 030001.
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In the absen
e of CP violation, the mixing

angles may be represented as Euler angles

relating the �avor eigenstates to the mass

eigenstates. ⊲

A

ording to the NuFIT analysis (p. 45),

the best-�t mixing angles and δ for the

normal mass ordering (a bit preferred) are:

PNMS CKM

θ12/
◦ 33.45+0.77

−0.75 13.04 ± 0.05

θ23/
◦ 42.1+1.1

−0.9 2.38 ± 0.06

θ13/
◦ 8.62+0.12

−0.12 0.201 ± 0.011

δ◦ 230+36
−25 68.8 ± 4.5

The CKM angles and CP phase are also

shown for 
omparison.

It should be stressed that the neutrino mass

spe
trum is still undetermined. ⊲

[Figures (slightly modi�ed and updated) are taken

from S. F. King, �Neutrino mass and mixing in the

seesaw playground,� arXiv:1511.03831 [hep-ph℄.℄
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νe
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0
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2

0
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2

e µ
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+

+

+

+

τ
ν ν ν

NH IH

Flavor 
ontent of mass states and mass 
ontent of �avor states is the same for Dira
 ν and ν (CP

phase δ only 
hanges the sign for ν) and for Majorana left/right νs (

∣∣V D

αi

∣∣ =
∣∣V M

αi

∣∣

).
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4.3.2 Flavor 
ontent of mass states and mass 
ontent of �avor states.

(
|Vαi|2

)

NH

=




0.681 0.297 0.0225

0.130 0.430 0.439

0.189 0.273 0.538


 ,

(
|Vαi|2

)

IH

=




0.681 0.297 0.0224

0.149 0.294 0.557

0.170 0.409 0.421


 .

νe

νe

νµ

νµ

ντ

ντ

νe

νe

νµ

νµ

ντ

ντ

νe
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ν 
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4.3.3 Current status of the neutrino masses from os
illation experiments.

So, NuFIT 5.1 provides the following 
onstraints for the mass squared splittings:

m2
2 −m2

1 = 7.42+0.21
−0.20 × 10−5

eV

2

(�solar� for NH and IH)

m2
3 −m2

1 = 2.51+0.027
−0.027 × 10−3

eV

2

(�atmospheri
� for NH)

m2
2 −m2

3 = 2.49+0.026
−0.028 × 10−3

eV

2

(�atmospheri
� for IH)

These result imply that at least two of the neutrino eigen�elds have nonzero masses and thus there

are (at least) two very di�erent possible s
enarios related to the mass ordering:

m1 ≪ m2 < m3 (for NH) or m3 ≪ m1 < m2 (for IH).

The data on ∆m2
ij give the following estimates (hen
eforth

∑
mν ≡

∑3

i=1
mi):

{
m2 = (8.61± 0.122)× 10−3

eV,

m3 = (5.01± 0.027)× 10−2

eV,
=⇒

∑
mν ≥ m2 +m3 = 0.0587± 0.0003 eV (for NH) (9)

{
m2 = (4.99± 0.028) × 10−2

eV,

m1 = (4.92± 0.029) × 10−2

eV,
=⇒

∑
mν ≥ m1 +m1 = 0.0983± 0.0006 eV (for IH) (10)

Therefore, the lower bounds on

∑
mν at 1σ C.L. are:

∑
mNH

ν > 0.0584 eV and

∑
mIH

ν > 0.0977 eV.

Note: Current a

elerator and rea
tor data favor the NH s
enario, but the question is not yet 
losed.
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(3−5)σ determination of

neutrino mass hierarchy

in 3/4 years

& RENO-50

+ T2K

+ Reactor exp.
    (DB, RENO, DC,...)

(KM3NeT) (IceCube-Gen2)

Cosmology
After M.Blennow

A summary of sensitivities to the neutrino mass hierar
hy for various experimental approa
hes, with

times
ales, as 
laimed by the proponents in ea
h 
ase. Widths indi
ate main expe
ted un
ertainty.
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CνB.

Reli
t neutrinos (or Cosmi
 Neutrino Ba
kground, or CNB, or CνB) produ
e the largest neutrino �ux

on Earth, but 
ompose only a very small fra
tion of invisible (non-luminous) matter in the Universe.

Dark Energy ~ 69%
[Cosmological Constant (?)]

Dark Matter ~ 26%
[presumably cold]

Neutrinos 0.1−0.3%
[Hot DM (?)]

Ordinary Matter ~ 5%
[of this only ~10% is luminous]

+ Radiation ~ 0.001%

Ω   = 0.685(7)Λ

Ω   = 0.265(7)c 

Ω     = 0.9993(19)tot 

Planck 2018  (TT, TE, EE + lowE + lensing) & BAO

0.0012 < Ω  < 0.003nΩ   = 0.0493(6)b 

Ω   = 0.315(7)m Nn
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CMB as a probe of CνB.

It is not yet realisti


to dire
tly dete
t the

νs 
reated within

the �rst se
ond after

the Big Bang, and

whi
h have too little

energy now. However,

for the �rst time,

Plan
k, ESA's mission

has unambiguously

dete
ted the e�e
t

CνB has on reli


radiation maps. The

quality of these maps

is now su
h that the

imprints left by dark

matter and reli
 νs

are 
learly visible.

a
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10

a

See N. Aghanim et al. (Plan
k Collaboration), �Plan
k 2018 results. I. Overview and the 
osmologi
al

lega
y of Plan
k�, Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO℄; �Plan
k 2018 results.

VI. Cosmologi
al parameters�, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO℄.
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The reli
 photon spe
trum almost

exa
tly follows the bla
kbody

spe
trum with temperature

T0 = 2.7255± 0.0006 K.

After many de
ades of experi-

mental and theoreti
al e�orts, the

CMB is known to be almost

isotropi
 but having small tem-

perature �u
tuations (
alled CMB

anisotropy) with amplitude

δT ∼
(
10−5 − 10−3

)
.

These �u
tuations 
an be

de
omposed in a sum of spheri
al

harmoni
s Ylm(θ, φ)

δT (θ, φ) =

∞∑

l=1

l∑

m=−l

almYlm(θ, φ).

The averaged squared 
oe�
ients

alm give the varian
e

Cl = 〈|alm|2〉 =
1

2l + 1

l∑

m=−l

|alm|2.
CMB maps 
an be 
ompressed into the power spe
trum

TT

P
ow

er
 s

p
ec

tr
u
m

 (
µ

K
 )2

Multipole l

∆

l < 30  l P30

Planck 2018
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

54



Plan
k 2018: neutrino summary.
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Su

essive redu
tions in the allowed parameter spa
e for various one-parameter extensions to ΛCDM,

from pre-WMAP (MAXIMA, DASI, BOOMERANG, VSA, CBI) to Plan
k. The 
ontours display the

68% and 95% C.L. for the extra parameter vs. �ve other base-ΛCDM parameters. The dashed lines

indi
ate the ΛCDM best-�t parameters or �xed default values of the extended parameters.

[Adopted from Aghanim et al. (Plan
k Collaboration), �Plan
k 2018 results. I. Overview and the 
osmologi
al lega
y of

Plan
k�, Astron. Astrophys. 641 (2020) A1, arXiv:1807.06205 [astro-ph.CO℄;℄
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Finally Plan
k 2018 (+BAO) sets:

∑
mν < 0.12 eV, N

e�

= 2.99 ± 0.17, ∆N

e�

< 0.3.

Here N

e�

is the e�e
tive number or neutrino spe
ies; roughly speaking, N

e�

≃ 3 means that

additional light neutrinos are not supported (although not ex
luded) by Plan
k.

But(!) this 
onstraint implies degenerate mass hierar
hy (DH), mi =
∑

mν/3, and many other

model assumptions. Results for other ν mass spe
tra have been obtained re
ently (m0 ≡ mmin):
a

Let's re
all the latest os
illation lower limits:

∑
mNH

ν & 0.058 eV and

∑
mIH

ν & 0.098 eV.

a

Sh. R. Choudhury & S. Hannestad, �Updated results on neutrino mass and mass hierar
hy from 
osmology

with Plan
k 2018 likelihoods,� JCAP07(2020)037, arXiv:1907.12598 [astro-ph.CO℄.
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Afterward: Open problems in neutrino physi
s.

• Are neutrinos Dira
 or Majorana fermions?

• What is the absolute mass s
ale of (known) neutrinos?

Why neutrino masses are so small? [Does any version of see-saw work?℄

What is the neutrino mass spe
trum? [sign(∆m2
32) ⇐⇒ NH or IH.℄

Can the lightest neutrinos be massless fermions? [Not quasiparti
les in Weyl semimetals!℄

• Why neutrino mixing is so di�erent from quark mixing?

What physi
s is responsible for the o
tant degenera
y? [sign(θ23 − 45◦).℄

• What are the sour
e and s
ale of CP/T violation in the neutrino se
tor?

How many CP violating phases are there?

• Is CPT 
onserved in the neutrino se
tor?

• How many neutrino �avors are there?

• Whether the number of neutrinos with de�nite masses is equal to or greater than the

number of �avor neutrinos? In other words, do sterile neutrinos exist?

a

If so,

◦ What is their mass spe
trum?

◦ Do they mix with a
tive neutrinos?

◦ Do light (heavy) sterile neutrinos 
onstitute hot (
old) dark matter?

• Are (all) neutrinos stable parti
les?

a

Hints from LSND+MiniBooNE, Neutrino-4, SAGE+GALLEX+BEST are in tension with many other data.
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5 Quantum-me
hani
al treatment.

5.1 Angels & hippopotami.

A

ording to the 
urrent theoreti
al understanding, the

neutrino �elds/states of de�nite �avor are superpositions of

the �elds/states with de�nite, generally di�erent masses [and

vi
e versa℄:

να =
∑

i

Vαiνi for neutrino �elds,

|να〉 =
∑

i

V ∗αi|νi〉 for neutrino states;

α = e, µ, τ , i = 1, 2, 3, . . .

Here Vαi are the elements of the Ponte
orvo-Maki-Nakagawa-

Sakata neutrino va
uum mixing matrix V.

This 
on
ept leads to the possibility of transitions between

di�erent �avor neutrinos, να ←→ νβ , phenomenon known

as neutrino �avor os
illations.
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Let us introdu
e two types of neutrino eigenstates:

• The �avor neutrino eigenstates whi
h 
an be written as a ve
tor

|ν〉
f

= (|νe〉, |νµ〉, |ντ 〉, . . .)T ≡ (|να〉)T

are de�ned as the states whi
h 
orrespond to the 
harge leptons α = e, µ, τ . The 
orresponden
e is

established through the 
harged 
urrent intera
tions of a
tive neutrinos and 
harged leptons.

Together with the standard νs, |ν〉
f

may in
lude also neutrino states allied with additional heavy 
harged

leptons, as well as the states not asso
iated with 
harge leptons, like sterile neutrinos, νs.

In general, the �avor states have no de�nite masses. Therefore, they 
an have either de�nite

momentum, or de�nite energy but not both.

• The neutrino mass eigenstates

|ν〉
m

= (|ν1〉, |ν2〉, |ν3〉, . . .)T ≡ (|νk〉)T

are, by de�nition, the states with the de�nite masses mk, k = 1, 2, 3, . . ..

Sin
e |να〉 and |νk〉 are not identi
al, they are related to ea
h other through a unitary transformation

|να〉 =
∑

k

V̂αk|νk〉 or |ν〉
f

= V̂|ν〉
m
,

where V̂ =‖ V̂αk ‖ is a unitary (in general, N×N) matrix.
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To �nd out the 
orresponden
e between V̂ and the PMNS mixing matrix V we 
an normalize the

�f � and �m� states by the following 
onditions

〈0|ναL(x)|να′〉 = δαα′

and 〈0|νkL(x)|νk′〉 = δkk′ .

From these 
onditions we obtain

∑

k

VαkV̂α′k = δαα′

and

∑

α

VαkV̂αk′ = δkk′ .

Therefore

V̂ ≡ V
†

and

|ν〉
f

= V
†|ν〉

m
⇐⇒ |ν〉

m
= V|ν〉

f
. (11)

The time evolution of a single mass eigenstate |νk〉 with momentum pν is trivial,

i
d

dt
|νk(t)〉 = Ek|νk(t)〉 =⇒ |νk(t)〉 = e−iEk(t−t0)|νk(t0)〉,

where Ek =
√
p2

ν +m2
k is the total energy in the state |νk〉. Now, assuming that all N states |νk〉

have the same momentum, one 
an write

i
d

dt
|ν(t)〉

m
= H0|ν(t)〉

m
, where H0 = diag (E1, E2, E3, . . .). (12)
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From Eqs. (11) and (12) we have

i
d

dt
|ν(t)〉

f
= V

†
H0V|ν(t)〉

f
. (13)

Solution to this equation is obvious:

|ν(t)〉
f

= V
†e−iH0(t−t0)

V |ν(t0)〉
f

= V
†

diag

(
e−iE1(t−t0), e−iE2(t−t0), . . .

)
V |ν(t0)〉

f
. (14)

Now we 
an derive the survival and transition probabilities

Pαβ(t− t0)= P [να(t0)→ νβ(t)]= |〈νβ(t)|να(t0)〉|2

=

∣∣∣
∑

k

VαkV
∗

βk exp [iEk(t− t0)]

∣∣∣
2

=
∑

jk

VαjVβk (VαkVβj)∗ exp [i(Ej − Ek)(t− t0)].

In the ultrarelativisti
 limit p2
ν ≫ m2

k, whi
h is undoubtedly valid for all interesting 
ir
umstan
es

(ex
ept reli
 neutrinos),

Ek =
√
p2

ν +m2
k ≈ pν +

m2
k

2pν
≈ Eν +

m2
k

2Eν
.
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Therefore in very good approximation

Pαβ(t− t0) =
∑

jk

VαjVβk (VαkVβj)∗ exp

[
i∆m2

jk(t− t0)

2Eν

]
.

As a rule, there is no way to measure t0 and t in the same experiment.

a

But it is usually possible to

measure the distan
e L between the sour
e and dete
tor. So we have to 
onne
t t− t0 with L. It is

easy to do in the standard ultrarelativisti
 approximation,

vk =
pν

Ek
≃ 1− m2

k

2E2
ν

= 1− 0.5× 10−14
(

mk

0.1 eV

)2 (1 MeV

Eν

)2

≃ 1,

from whi
h it almost evidently follows that t− t0 ≈ L. Finally we arrive at the following formula

Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)
, Ljk =

4πEν

∆m2
jk

, (15)

where Ljk (or more exa
tly |Ljk| = |Lkj |) are the so-
alled neutrino os
illation lengths.

It is straightforward to prove that the QM formula satis�es the probability 
onservation law:

∑

α

Pαβ(L) =
∑

β

Pαβ(L) = 1.

The range of appli
ability of the standard quantum-me
hani
al approa
h is limited but enough for

the interpretation of essentially all modern experiments with a

elerator, rea
tor, atmospheri
, solar,

and astrophysi
al neutrino beams.

a

Important ex
eptions will be dis
ussed in the spe
ial se
tion.
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5.2 Energy 
onservation.

Although the energy of the state with de�nite �avor, |να(L)〉 = |να(t)〉, is not de�ned, its mean

energy, 〈Eα(t)〉 = 〈να(t)|Ĥ|να(t)〉, is a well-de�ned and 
onserved quantity. Indeed,

〈Eα(t)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ĥ|νj(p)〉 =
∑

ij

VαiV
∗

αj〈νi(p)|Ei|νj(p)〉 ≡ 〈Eα〉 = inv.

〈Eα〉 =
∑

i

|Vαi|2Ei ≃ p+
∑

i

|Vαi|2m
2
i

2p
, =⇒

∑

α

〈Eα〉 =
∑

i

Ei ≃ 3

(
p+

∑

i

m2
i

2p

)
.

Moreover, the mean energy of an arbitrary entangled state 
hara
terized by a 
ertain density matrix

ρ(t) is also 
onserved. Indeed, let the initial state have the form

ρ(0) =
∑

α

wα|να(0)〉〈να(0)|,

The mean energy of the mixed state at arbitrary time t is then written as

〈E(t)〉 = Tr

(
Ĥρ(t)

)
= Tr

(
Ĥe−iĤtρ(0)eiĤt

)

=
∑

α

wα

∑

ij

V ∗αiVαje
−i(Ei−Ej )tEi Tr|νi(p)〉〈νj(p)|

=
∑

α

wα

∑

i

|Vαi|2Ei = inv, =⇒ 〈E(t)〉 =
∑

α

wα〈Eα〉.

Naturally, 〈E(t)〉 = 〈Eα〉 for the pure initial state |να(0)〉 (when ρ(0) = |να(0)〉〈να(0)|).
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5.3 Simplest example: two-�avor os
illations.

Let's now 
onsider the simplest (toy) 2-�avor model, e.g., with i = 2, 3 and α = µ, τ (the most

favorable due to the SK and other underground experiments). The 2× 2 va
uum mixing matrix 
an

be parametrized (due to the unitarity) with a single parameter, θ (= θ23), the va
uum mixing angle,

V =

(
cos θ sin θ

− sin θ cos θ

)
, 0 ≤ θ ≤ π

2
.

In this model, Eq. (15) then be
omes very simple and

transparent:

Pµτ (L) = Pτµ(L) =
1

2
sin2 2θ

[
1− cos

(
2πL

L

v

)]
,

L

v

≡ L23 =
4πEν

∆m2
23

≈ 2R⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2
23

)
.

Here R⊕ is the mean radius of Earth and 10 GeV is a

typi
al energy in the (very wide) atmospheri
 neutrino

spe
trum.

Sin
e Earth provides variable �baseline� [from about

15 km to about 12700 km℄, it is surprisingly suitable

for studying the atmospheri
 (as well as a

elerator

and rea
tor) neutrino os
illations in rather wide range

of the os
illation parameters.

https://universe-review.ca/R15-13-neutrino.htm
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2016

N
u

m
b

e
r 

o
f 
E

v
e

n
ts

Zenith angle and momentum distributions for atmospheri
 neutrino subsamples used for an analyses

by Super-Kamiokande to study subleading e�e
ts, preferen
es for mass hierar
hy and δ

CP

, as well as

sear
hes for astrophysi
al sour
es su
h as dark matter annihilation.

[From T. Kajita et al. (for the Super-Kamiokande Collaboration), �Establishing atmospheri
 neutrino os
illations with

Super-Kamiokande, �Nu
l. Phys. B 908 (2016) 14�29.℄
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The event spe
tra at MINOS from 10.71× 1020

POT FHC (νµ-dominated) mode, 3.36× 1020

POT

RHC (νµ-dominated) mode and 37.88 kt·yrs of atmospheri
 data. The data are shown 
ompared to

the predi
tion in absen
e of os
illations (grey lines) and to the best-�t predi
tion (red). The beam

histograms (top) also in
lude the NC ba
kground 
omponent (�lled grey) and the atmospheri


histograms (bottom) in
lude the 
osmi
-ray ba
kground 
ontribution �lled blue).

[From L. H. Whitehead (For the MINOS Collaboration), �Neutrino os
illations with MINOS and MINOS+,� Nu
l. Phys.

B 908 (2016) 130�150.℄
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5.4 Summary of the standard QM theory.

The standard assumptions are intuitively transparent and (almost) 
ommonly a

epted.

[1℄ The neutrino �avor states |να〉 asso
iated with the 
harged leptons α = e, µ, τ (that is having

de�nite lepton numbers) are not identi
al to the neutrino mass eigenstates |νi〉 with the de�nite

masses mi (i = 1, 2, 3).

Both sets of states are orthonormal: 〈νβ |να〉 = δαβ , 〈νj |νi〉 = δij .

⇓

They are related to ea
h other through a unitary transformation V = ||Vαi||, VV† = 1,

|να〉 =
∑

i

V ∗αi|νi〉, |νi〉 =
∑

α

Vαi|να〉.

[2℄ Massive neutrino states originated from any rea
tion or de
ay have the same de�nite momenta

pν [�equal momentum (EM) assumption�℄.

a

To simplify matter, we do not 
onsider exoti
 pro
esses with multiple neutrino produ
tion.

⇓

The �avor states |να〉 have the same momentum pν but have no de�nite mass and energy.

a

Sometimes � the same de�nite energies [�equal energy (EE) assumption�℄.
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[3℄ Neutrino masses are so small that in essentially all experimental 
ir
umstan
es (or, more

pre
isely, in a wide 
lass of referen
e frames) the neutrinos are ultrarelativisti
. Hen
e

Ek =
√

p2
ν +m2

k ≃ |pν |+ m2
k

2|pν |
.

[4℄ Moreover, in the evolution equation, one 
an safely repla
e the time parameter t by the distan
e

L between the neutrino sour
e and dete
tor. [Let's remind that ~ = c = 1.℄

The enumerated assumptions are su�
ient to derive the ni
e and 
ommonly a

epted expression for

the neutrino �avor transition probability [Ljk are the neutrino os
illation lengths℄:

P (να → νβ ;L) ≡ Pαβ(L) =
∑

jk

VαjVβk (VαkVβj)∗ exp

(
2iπL

Ljk

)

=
∑

j

|Vαj |2 |Vβj |2 + 2
∑

j>k

[
Re

(
V ∗αjVβjVαkV

∗
βk

)
cos

(
2πL

Ljk

)

+ Im

(
V ∗αjVβjVαkV

∗
βk

)
sin

(
2πL

Ljk

)]
,

Ljk =
4πEν

∆m2
jk

, Eν = |pν |, ∆m2
jk = m2

j −m2
k.

Just this result is the basis for the �os
illation interpretation� of the 
urrent experiments

with the natural and arti�
ial neutrino and antineutrino beams.
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5.5 Some 
hallenges against the QM approa
h.

� Equal-momentum assumption

Massive neutrinos νi have, by assumption, equal momenta: pi = pν (i = 1, 2, 3).

This key assumption seems to be unphysi
al being referen
e-frame (RF) dependent;

if it is true in a 
ertain RF then it is false in another RF moving with the velo
ity v:

E′i = Γv [Ei − (vpν)], p
′
i = pν + Γv

[
Γv(vpν)

Γv + 1
− Ei

]
v,

⇓ [assuming, as ne
essary for os
illations, that mi 6= mj ] ⇓
p
′
i − p

′
j =

(
E′j − E′i

)
v = Γv (Ej − Ei) v 6= 0.

Treating the Lorentz transformation as a
tive, we 
on
lude that the EM assumption 
annot be

applied to the non-monoenergeti
 ν beams (the 
ase in real-life experiments).

∗ A similar obje
tion exists against the alternative equal-energy assumption; in that 
ase

E′i −E′j = Γv (pj − pi) v 6= 0,
∣∣p′i − p

′
j

∣∣ =

√
|pi − pj |2 + Γ 2

v [(pi − pj) v]2 6= 0.

∗ Can the EM (or EE) assumption be at least a good approximation? Alas, no, it 
annot.

Let νµs arise from πµ2 de
ays. If the pion beam has a wide momentum spe
trum � from subrelativisti


to ultrarelativisti
 (as it is, e.g., for 
osmi
-ray parti
les), the EM (or EE) 
ondition 
annot be valid

even approximately within the whole spe
tral range of the pion neutrinos.
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� Light-ray approximation

The propagation time T is, by assumption, equal to the distan
e L traveled by the neutrino

between produ
tion and dete
tion points. But, if the massive neutrino 
omponents have the

same momentum pν , their velo
ities are in fa
t di�erent:

vi =
pν√

p2
ν +m2

i

=⇒ |vi − vj | ≈
∆m2

ji

2E2
ν
.

One may naively expe
t that during the time T the neutrino νi travels the distan
e Li = |vi|T ;

therefore, there must be a spread in distan
es of ea
h neutrino pair
δLij = Li − Lj ≈

∆m2
ji

2E2
ν
L, where L = cT = T .

∆m2
ji Eν L Lij |δLij |

∆m2
23 1 GeV 2R⊕ 0.1R⊕ ∼ 10−12


m

∆m2
23 1 TeV RG ∼ 100 kps 100R⊕ ∼ 10−4


m

∆m2
21 1 MeV 1 AU 0.25R⊕ ∼ 10−3


m

The values of δLij listed in the Table seem to be fantasti
ally small. But

Are they su�
iently small to preserve the 
oheren
e in any 
ir
umstan
e?

In other words:

What is the natural s
ale of the distan
es and times?
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� Can light neutrinos os
illate into heavy ones or vise versa?

[Can a
tive neutrinos os
illate into sterile ones or vise versa?℄

The naive QM answer is Yes. Why not? If, at least, both να (light) and νs (heavy) are

ultrarelativisti
 [ |pν | ≫ max(m1,m2,m3, . . . ,M), ℄ one obtains the same formula for the

os
illation probability Pαs(L), sin
e the QM formalism has no any limitation to the neutrino

mass hierar
hy.

Possibility of su
h transitions is a basis for many spe
ulations in astrophysi
s and 
osmology.

But! Assume again that the neutrino sour
e is πµ2 de
ay and M > mπ. Then the transition

να → νs in the pion rest frame is forbidden by the energy 
onservation.

⇓

There must be some limitations & �aws in the QM formula. What are they?

� Do reli
 neutrinos os
illate?

Most likely the lightest reli
 neutrinos are always relativisti
 or even ultrarelativisti
, while

heavier ones be
ome subrelativisti
 and then non-relativisti
 as the universe expands.

The naive QM approa
h does not know how to handle su
h a set of neutrinos.

� Does the motion of the neutrino sour
e a�e
t the transition probabilities?

To answer these and similar questions

one has to unload the UR approximation & develop a 
ovariant formalism.
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In the QFT approa
h: the e�e
tive (most probable) energies and momenta of virtual νis are found to be

fun
tions of the masses, most probable momenta and momentum spreads of all parti
les (wave pa
kets)

involved into the neutrino produ
tion and dete
tion pro
esses.

In parti
ular, in the two limiting 
ases � ultrarelativisti
 (UR) and nonrelativisti
 (NR):

Ultrarelativisti
 
ase

(|q0
s,d| ∼ |qs,d| ≫ mi)






Ei= Eν

[
1 − nri − mr2

i + . . .
]
,

|pi|= Eν

[
1 − (n + 1) ri −

(
m + n +

1

2

)
r2

i + . . .

]
,

vi= 1 − ri −

(
2n +

1

2

)
r2

i + . . . < 1,

Nonrelativisti
 
ase

(|q0
s,d| ∼ mi ≫ |qs,d|)





Ei= mi +
miv

2
i

2

(
1 +

3

4
δi + . . .

)
,

|pi|= mivi

(
1 +

1

2
δi + . . .

)
,

vi≈
̺il

1 + ̺0
i

≪ 1,

p
s
i p

s
f

p
d
i p

d
f

q  = p  - p
d
f

d
i

d

ν
i

q  = p  - ps
f

s
i

s

Eν ≈ q0
s ≈ −q0

d, ri =
m2

i

2E2
ν

≪ 1 (UR),

̺µ
i =

1

miR

[
ℜ̃µ0

s

(
mi − q0

s

)
+ ℜ̃µ0

d

(
mi + q0

d

)
− ℜ̃µk

s qk
s + ℜ̃µk

d qk
d

]
, |̺µ

i | ≪ 1 (NR).
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� De�nite momentum assumption

In the naive QM approa
h, the assumed de�nite momenta of neutrinos (both να and νi) imply

that the spatial 
oordinates of neutrino produ
tion (Xs) and dete
tion (Xd) are fully un
ertain

(Heisenberg's prin
iple).

⇓

The distan
e L = |Xd −Xs| is un
ertain too, that makes the standard QM formula for the

�avor transition probabilities to be stri
tly speaking senseless.

In the 
orre
t theory, the neutrino momentum un
ertainty δ|pν | must be at least of the order of

min(1/Ds, 1/Dd), where Ds and Dd are the 
hara
teristi
 dimensions of the sour
e and

dete
tor �ma
hines� along the neutrino beam.

⇓

The neutrino states must be some wave pa
kets (WP) [though having very small spreads℄

dependent, in general, on the quantum states of the parti
les [or, more exa
tly, also WPs℄ whi
h

parti
ipate in the produ
tion and dete
tion pro
esses.

In the QFT approa
h: the e�e
tive WPs of virtual UR νis are found to be

ψ
(∗)
i = exp

{
±i(piXs,d) −

D̃2
i

E2
ν

[
(piX)2 −m2

iX
2
]}

, X = Xd −Xs,

where pi = (Ei,pi) and Xs,d are the 4-ve
tors whi
h 
hara
terize the spa
e-time lo
ation of the ν

produ
tion and dete
tion pro
esses, while D̃i are 
ertain (in general, 
omplex-valued) fun
tions of

the masses, mean momenta and momentum spreads of all parti
les involved into these pro
esses.

[D̃i/Eν and thereby ψi are Lorentz invariants.℄
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5.6 The aims and 
on
epts of the �eld-

theoreti
al approa
h.

The main purposes:

To de�ne the domain of appli
ability of the standard

quantum-me
hani
al (QM) theory of va
uum neutrino

os
illations and obtain the QFT 
orre
tions to it.

The basi
 
on
epts:

• The �ν-os
illation� phenomenon in QFT is nothing

else than a result of interferen
e of the ma
ros
opi


Feynman diagrams perturbatively des
ribing the lepton

number violating pro
esses with the massive neutrino

�elds as internal lines (propagators).

• The external lines of the ma
rodiagrams are wave

pa
kets rather than plane waves (therefore the standard

S matrix approa
h should be revised).

• The external wave pa
ket states are the 
ovariant

superpositions of the standard one-parti
le Fo
k states,

satisfying a 
orresponden
e prin
iple.

x 1

x 2

π  +

n

τ  −

µ  +

p

ν i

Referen
es: D. V. Naumov & VN, J. Phys. G 37 (2010) 105014, arXiv:1008.0306 [hep-ph℄; Russ. Phys. J.

53 (2010) 549�574; arXiv:1110.0989 [hep-ph℄; Ý×Àß 51 (2020) 1�209 [Phys. Part. Nu
l. 51 (2020) 1�106℄.
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5.7 A sket
h of the approa
h.

Let us �rst 
onsider the basi
s of the QFT approa
h using the simplest example.

5.7.1 QFT approa
h by the example of the rea
tion π⊕n → µ⊕τp.

+

pn 

−τ

µπ   +
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The rare rea
tions π+⊕n → µ+⊕ τ−p+ . . . were (indire
tly) dete
ted by several underground

experiments (Kamiokande, IMB, Super-Kamiokande) with atmospheri
 neutrinos. In 2010,

OPERA experiment (INFN, LNGS) with the CNGS neutrino beam announ
ed the dire
t

observation of the �rst τ−


andidate event; six 
andidates were re
orded in several years

of the dete
tor operation.

π
+

µ  +

ν
i

n

−

p

τ

π
+

µ  +

ν
i

n

−

p

τ

77



+

νi

W
+

W −

pn

−τ

µπ+

→udd      uud

ud

}{i

A =∑
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+

νi

W
+

W −

pn

−τ

µπ+

→udd      uud

Vµi
*

Vτi

ud

}{i

A =∑

V    are the elements of the
Pontecorvo-Maki-Nakagawa
-Sakata (PMNS) neutrino
vacuum mixing matrix V.

 αi
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+

ν (q )i

W  (k)
+

W  (k')−

p -p *pn -p *n

−τ  -p *τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

ùù
ù
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+
W  (k)

+

W  (k')−

p -p *pn -p *n

−τ  -p *
τ

µ  -p *
µπ  -p *

π
+

V
µi
*

V
τi

| 2 ( ) | 0E a+ñ = ñ
p

p p
ù

ù ù ù

( )3| (2 ) 2Ep dá ñ = -
k

q k k q

2 2 , , , ,E m np m= + = ¼
p

p ù

In the standard S matrix pertur-
bation theory the in & out states 
are one-particle Fock states:

Feynman graphs
 with Fock legs
cannot reproduce
 the ν-oscillation
   phenomenon. ùù

ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

In our approach the in and out
states are covariant wave packets:

( )

3

( , )
( , ) ( )

2(2 )

i k p xd e
A x a

E E

f

p

-
+ += ò

k p

k k p
p k

ù ù

PWL

( , ) ( ) , | , 2 VA x a x x m+ + Þ á ñ =p p p p֏
ù ù ⊻

ν (q ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))i

For simplicity we
omit the spin and 
other discrete 
variables in the
WP states

| , 2 ( , ) | 0x E A x+ñ =  ñ
p

p p
ù

ù ù ù ù ù
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

Interaction region

WP can be roughly thought
as small interpenetrative
cloudlets which are, however,
much larger than the micro-
scopic interaction regions in
the source/detector vertices. 

µ

π

n

p

τ
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

( )exp 1s∝ − ≪S

( )exp 1d∝ − ≪S

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Unlucky configurations of the
world tubes of the WPs are
suppressed by the geometric

factors exp(-S   ) dependent 
of the in & out momenta and
space-time coordinates.

s,d
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

Interaction region

q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q )

Lucky configurations of
the world tubes are not
suppressed, providing
possibility for interaction
of the WPs.

( )exp ~ 1s∝ −S

( )exp ~ 1d∝ −S
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+

ν (q )i

W  (k)
+

W  (k')−

p -p ,x *p pn -p ,x *n n

−τ  -p ,x *τ τ

µ  -p ,x *
µ µπ  -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region
   (microscopic)

µ

τ

p

n

π

ν
i

Interaction region
   (microscopic)

Overlap
 region

Interaction region

Micro- or small
macro-scopic
(mesoscopic)

Large macroscopic distance
    (up to astronomical)

Micro-
scopic
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+

ν (q )i

W  (k)
+

W  (k')−

p  -p ,x *p pn  -p ,x *n n

−τ   -p ,x *τ τ

µ   -p ,x *
µ µπ   -p ,x *

π π
+

V
µi
*

V
τi

Source vertex

Detector vertex

Interaction region

µ

τ

p

n

π

ν
i

Interaction region

Overlap
 region

Overlap region

Impact

point Xs

Impact pointXd

)

The impact points X  and X 
are the 4-vectors defined as

s d

1

sX T T T x T x

1

d n p n n p pX T T T T x T x T x

0 1

, ,  ( )   s d s dx x p p X X֏ ֏
ù ù ù ù ù
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5.7.2 Spa
e-time s
ales.

In the 
ovariant WP approa
h there are several spa
e-time s
ales:

• T s,d
I and Rs,d

I � mi
ros
opi
 intera
tion time and radius de�ned by the Lagrangian.

• T s,d
O and Rs,d

O � mi
ros
opi
 or small ma
ros
opi
 dimensions of the overlap spa
e-time regions

of the intera
ting in and out pa
kets in the sour
e and dete
tor verti
es, de�ned by the e�e
tive

dimensions of the pa
kets.

The suppression of the �unlu
ky� 
on�gurations of world tubes of the external pa
kets is

governed by the geometri
 fa
tor in the amplitude:

exp [− (Ss + Sd)],

where Ss,d are the positive Lorentz and translation invariant fun
tions of {pκ} and {xκ}. In

the simplest one-parameter model of WP (relativisti
 Gaussian pa
ket)

Ss,d =
∑

σ2
κ
|b⋆

κ
|2, κ ∈ S,D,

where σκ are the momentum speeds of the pa
ket κ and b⋆
κ

is the 
lassi
al impa
t ve
tor in

the rest frame of the pa
ket κ relative to the 
orresponding impa
t point.

• T = X0
d −X0

s and L = |Xd −Xs| � large ma
ros
opi
 neutrino time of �ight and way between

the impa
t points Xs and Xd.

For light neutrinos, the impa
t points lie very 
lose to the light 
one T 2 = L2

.

• In usual 
ir
umstan
e (terrestrial experiments) T s,d
I ≪ T s,d

O ≪ T and Rs,d
I ≪ Rs,d

O ≪ L.
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5.7.3 Examples of ma
ros
opi
 diagrams.

• The pp fusion.

The �rst rea
tion of the pp I bran
h

1

H + 1

H→ 2

D + e+ + νe (Eν < 420 keV)

lights the Sun and 
an be dete
ted in Ga-Ge dete
tors like SAGE and GALLEX.

xs

νi

W

W

e

+

+

e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e

+

+

e−

e− νj
xd

p
p D2 xs

νi

W

Z

e

+

e−e−

νi

xd

p
p D2

(a) (b) (c)

+ + +

These two diagrams interfere

The Figure illustrates the dete
tion of pp neutrinos with gallium (a) and ele
tron (b,
) targets.

Unfortunately, the �nal ele
tron energies in the rea
tions (b,
) are too low to be dete
ted by

Cherenkov method.
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• The pep fusion.

The rea
tion

1

H + 1

H + e− → 2

D + νe (Eν = 1.44 MeV)

a

ounts for about 0.25% of the deuterium 
reated in the Sun in the pp 
hain. It has a 
hara
teristi


time s
ale ∼ 1012

yr that is larger than the age of the Universe. So it is insigni�
ant in the Sun as far

as energy generation is 
on
erned. Enough pep fusions happen to produ
e a dete
table number of

neutrinos in Ga-Ge dete
tors. Hen
e the rea
tion must be a

ounted for by those interested in the

solar neutrino problem.

xs

νi

W

W

e−
+

+
e−

p
p D

xdGa71 Ge71

2 xs

νi

W

W

e−
+

+
e−

e− νj
xd

p
p D2 xs

νi

W

Z

e−
+

e−e−

νi

xd

p
p D2

(a) (b) (c)
These two diagrams interfere

The Figure illustrates the dete
tion of pep neutrinos with gallium (a) and ele
tron (b,
) targets.

Similar to the pp neutrino 
ase, the diagram sets (
) and (d) interfere. While the �nal ele
tron in the

dete
tor verti
es of the diagrams (b,
) may have a momentum above the Cherenkov threshold, the


urrent water-Cherenkov dete
tors SK and SNO+ are insensitive to the pep neutrinos.
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• The µe3 de
ay

µ− → e− + νe + νµ

in the sour
e 
an be dete
ted through

quasielasti
 s
attering with produ
tion

of e±, µ±, or τ±; of 
ourse, only µ±

produ
tion is permitted in SM. The

diagrams (a) and (b) are for both

Dira
 and Majorana (anti)neutrinos,

while diagrams (
) and (d) are only for

Majorana neutrinos.

In the Majorana 
ase, the diagrams (a),

(d) and (b), (
) interfere. Potentially

this provides a way for distinguishing

between the Dira
 and Majorana


ases. Unfortunately, the diagrams (
)

and (d) are suppressed by a fa
tor

∝ mi/Eν .

n

τ
+

W
−

ν  
j

µ−

e−
W

−

ν
i

τ
−

W
+

ν 
j

µ−

e−W
−

ν
i−

−

p xd xdn p 

xs xs

p

τ
−

W
+

ν  
j

µ−

e−
W

−

ν
i

τ
+

W
−

ν 
j

µ−

e−W
−

ν
i

n xd xdp n 

xs xs

D
ir

a
c 

o
r 

M
a
jo

ra
n
a

M
a
jo

ra
n
a

(a) (b)

(c) (d)

Similar diagrams 
an be drawn for τe3 and τµ3 de
ays.
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5.8 Shortest summary.

The QFT-based neutrino os
illation theory deals with generi


Feynman's ma
rodiagrams (�myriapods�). ⊲

The external legs 
orrespond to asymptoti
ally free in
oming

(�in�) and outgoing (�out�) wave pa
kets (WP) in the 
oordinate

representation. Here and below: Is (Fs) is the set of in (out) WPs in

Xs (�sour
e�), Id (Fd) is the set of in (out) WPs inXd (�dete
tor�).

Xd

Xs

νi

}
}

Is

Id

Fs

Fd

}

}

© Copyright California Institute of Technology. All rights reserved.

     Commercial use or modification of this material is prohibited. The internal line denotes the 
ausal Green's fun
tion of the

neutrino mass eigen�eld νi (i = 1, 2, 3, . . .). The blo
ks (verti
es)

Xs and Xd must be ma
ros
opi
ally separated in spa
e-time.

This explains the term �ma
ros
opi
 Feynman diagram�.

For narrow WPs, the Feynman rules in the formalism are to

be modi�ed

a

in a rather trivial way: for ea
h external line, the

standard (plain-wave) fa
tor must be multiplied by

{
e−ipa(xa−x)ψa (pa, xa − x) for a ∈ Is⊕Id,

e+ipb(xb−x)ψ∗b (pb, xb − x) for b ∈ Fs⊕Fd,

(16)

where ea
h fun
tion ψκ (pκ , x) (κ = a, b) is spe
i�ed by the

massmκ and momentum spread σκ. The lines inside Xs and Xd

(in
luding possible loops) and vertex fa
tors remain un
hanged.

a

For non-
ommer
ial purposes.
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5.8.1 Important 
lass of ma
rodiagrams.

As a pra
ti
ally important example, we


onsider the 
harged-
urrent indu
ed

produ
tion of 
harged leptons ℓ+
α and ℓ−β

(ℓα,β = e, µ, τ) in the pro
ess

Is⊕Id → F ′s + ℓ+
α ⊕ F ′d + ℓ−β , (17)

We assume for de�niteness that all the

external substates Is, Id, F
′
s, and F

′
d 
onsist

ex
lusively of (asymptoti
ally free) hadroni


WPs.

Consequently, if α 6= β, the pro
ess (17)

violates the lepton numbers Lα and Lβ that

is only possible via ex
hange of massive

neutrinos (no matter whether they are Dira


or Majorana parti
les).

In the lowest nonvanishing order in

ele
troweak intera
tions, the pro
ess (17) is

des
ribed by the sum of the diagrams shown

in the �gure. ⊲

}

}I s

ν
j

W

Fs

ℓα
+

}F's

q q’

}
} }

I d

W

Fd

ℓβ
−

F'd

q’ q

Xs

Xd

qs

(q    = p  − p    )s,d in out

hadrons hadrons

hadrons hadrons

qd

QCD

QCD

The impa
t points Xs and Xd in the �gure are ma
ros
opi
ally separated and the asymptoti



onditions are assumed to be ful�lled.
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5.8.2 Main result.

A rather general (while not the most general) expression for the number of neutrino-indu
ed events


orresponding to the diagram shown in previous page, is of the form

Nβα

τd
=
∑

spins

∫
dx

∫
dy

∫
dPs

∫
dPd

∫
d|q|Pαβ (|q|, |y− x|)

4(2π)3|y− x|2 ,

Pαβ (|q|, |y− x|) =
∑

ij

VβjVαiV
∗

βiV
∗

αj exp
(
iϕij −A2

ij − C2
ij −Θij

)
Sij ,

Sij =
exp(−B2

ij)

4Dτd

2∑

l,l′=1

(−1)l+l′+1

Ierf

[
2D
(
x0

l − y0
l′ + |y− x|

)
+iBij

]
,

D = 1/

√
2ℜ̃µν lµlν ,

dPs = (2π)4δs(q − qs)|Ms|2
∏

a∈Is

dpafa(pa, sa, x)

(2π)32Ea

∏

b∈Fs

dpb

(2π)32Eb
,

dPd = (2π)4δd(q + qd)|Md|2
∏

a∈Id

dpafa(pa, sa, y)

(2π)32Ea

∏

b∈Fd

[dpb]

(2π)32Eb
.

The ingredients are listed on p. 96. These formulas do not take into a

ount the inverse-square law

violation 
orre
tions, for whi
h we unfortunately do not have enough time to dis
uss.

a

a

See VN & D. S. Shkirmanov, Eur. Phys. J. C 73 (2013) 2627; Universe 7 (2021) 246 and refs. therein.
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Òàáëèöà 1: Ingredients of the equations shown in p. 95, in the leading order for the o�-

mass-shell (short distan
es) and on-mass-shell (long distan
es) regimes. Here L = |y − x|,

∆m2
ij = m2

i −m2
j , Q4 =

(
R00Rµν − R0µR0ν

)
lµlν , Y

µ = ℜ̃µνs qsν − ℜ̃µνd qdν , ℜ̃s,d are the

so-
alled inverse overlap tensors of in and out WPs in the sour
e and dete
tor verti
es,

ℜ̃ = ℜ̃s + ℜ̃d, R is the tensor inverse to ℜ̃ (that is Rµλℜ̃λν = δµν ), and Σ = det(R)1/8

is the

s
ale of the energy-momentum dispersion of the e�e
tive neutrino WP. Last 
olumn shows the

order of magnitude (OoM) of the quantity. Evidently, Eν ≃ q0 ≃ |q| in the UR approximation.

Quantity O�-shell regime On-shell regime OoM

ϕij

∆m2
ijL

2|q|
∆m2

ijL

2Eν

|∆m2
ij |L

Eν

A2
ij

(
∆m2

ijL

2|q|2
)2 Q4

2Rµν lµlν

(
∆m2

ijL

2E2
ν

)2
1

2ℜ̃µν lµlν

(
∆m2

ij

E2
ν

ΣL

)2

Bij

∆m2
ij

4|q|

√
ℜ̃µν lµlν

2

R0µlµ
Rµν lµlν

∆m2
ij

4Eν

√
ℜ̃µν lµlν

2

Yklk
Y µlµ

|∆m2
ij |

ΣEν

C2
ij

(
∆m2

ij

2|q|

)2
1

8Rµν lµlν
0

(
∆m2

ij

ΣEν

)2

Θij

m2
i +m2

j

4|q|
[
ℜ̃0µ

s (q − qs)µ

m2
i +m2

j

4q0

[
ℜ̃µk

s lk (q0l − qs)µ

+ℜ̃0µ
d (q + qd)µ

]
+ℜ̃µk

d lk (q0l + qd)µ

] m2
i +m2

j

ΣEν
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6 Neutrino refra
tion.

It has been noted by Wolfenstein

a

that neutrino os
illations in a medium are a�e
ted by

intera
tions even if the thi
kness of the medium is negligible in 
omparison with the neutrino

mean free path.

Let us forget for the moment about the inelasti
 
ollisions and 
onsider the simplest 
ase of a

ultrarelativisti
 neutrino whi
h moves in an external (e�e
tive) potential W formed by the

matter ba
kground. If the neutrino momentum in va
uum was p then its energy was

≃ p = |p|. When the neutrino enters into the medium, its energy be
omes E = p+W . Let

us now introdu
e the index of refra
tion n = p/E whi
h is a positive value in the absen
e of

inelasti
 
ollisions. Therefore

W = (1 − n)E ≃ (1 − n)p. (18)

In the last step, we took into a

ount that neutrino intera
tion with matter is very weak,

|W | ≪ E, and thus E ≃ p is a good approximation.

The natural generalization of Eq. (13) for the time evolution of neutrino �avor states in

matter then follows from this simple 
onsideration and the quantum-me
hani
al


orresponden
e prin
iple.

a

L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
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This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V† + W(t)

]
|ν(t)〉

f
, (19)

where

W(t) = diag

(
1 − nνe

, 1 − nνµ
, 1 − nντ

, . . .
)
p (20)

is the intera
tion Hamiltonian.

It will be useful for the following to introdu
e the time-evolution operator for the �avor states

de�ned by

|ν(t)〉
f

= S(t)|ν(0)〉
f
.

Taking into a

ount that |ν(t)〉
f

must satisfy Eq. (19) for any initial 
ondition

|ν(t = 0)〉
f

= |ν(0)〉
f

, the Wolfenstein equation 
an be immediately rewritten in terms of

the evolution operator:

iṠ(t) =
[
VH0V† + W(t)

]
S(t), S(0) = 1. (21)

This equation (or its equivalent (19)) 
annot be solved analyti
ally in the general 
ase of a

medium with a varying (along the neutrino pass) density. But for a medium with a slowly

(adiabati
ally) varying density distribution the approximate solution 
an be obtained by a

diagonalization of the e�e
tive Hamiltonian. Below we will 
onsider this method for a rather

general 2-�avor 
ase but now let us illustrate (without derivation) the simplest situation with

a matter of 
onstant density.
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6.1 Matter of 
onstant density.

In the 2-�avor 
ase, the transition probability is given by the formula very similar to that for va
uum:

Pαα′ (L) =
1

2
sin2 2θ

m

[
1− cos

(
2πL

L

m

)]
,

L

m

= L

v

[
1− 2κ (L

v

/L0) cos 2θ + (L

v

/L0)2
]−1/2

.

The L

m

is 
alled the os
illation length in matter and is de�ned through the following quantities:

L

v

≡ L23 =
4πE

∆m2
, L0 =

√
2πA

GFNAZρ
≈ 2R⊕

(
A

2Z

)(
2.5 g/
m

3

ρ

)
,

κ = sign

(
m2

3 −m2
2

)
, ∆m2 =

∣∣m2
3 −m2

2

∣∣ .

The parameter θ

m

is 
alled the mixing angle in matter and is given by

sin 2θ

m

= sin 2θ
(
L

m

L
v

)
,

cos 2θ

m

=
(

cos 2θ − κLv

L0

)(
L

m

L

v

)
.

The solution for antineutrinos is the same but with the repla
ement

κ 7−→ −κ.

The 
loseness of the value of L0 to the Earth's diameter is even more surprising than that for L

v

.

The matter e�e
ts are therefore important for atmospheri
 neutrinos.
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7 Propagation of high-energy mixed neutrinos through

matter.

�The matter doesn't matter�

Lin
oln Wolfenstein, le
ture given at 28th

SLAC Summer Institute on Parti
le Physi
s

�Neutrinos from the Lab, the Sun, and the

Cosmos�, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through va
uum there is a phase 
hange exp
(
−im2

i t/2pν

)
. For two

mixed �avors there is a resulting os
illation with length

L

va


=
4πEν

∆m2
≈ D⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2

)
.

In matter there is an additional phase 
hange due to refra
tion asso
iated with forward s
attering

exp [ipν(Ren− 1)t].

The 
hara
teristi
 length (for a normal medium) is

L

ref

=

√
2A

GFNAZρ
≈ D⊕

(
A

2Z

)(
2.5 g/
m

2

ρ

)
.

It is generally believed that the imaginary part of the index of refra
tion n whi
h des
ribes the

neutrino absorption due to inelasti
 intera
tions does not a�e
t the os
illation probabilities or at the

least inelasti
 intera
tions 
an be someway de
oupled from os
illations.
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The 
onventional arguments are

• Ren− 1 ∝ GF while Imn ∝ G2
F ;

• Only ∆n may a�e
t the os
illations and ∆Imn is all the more negligible.

It will be shown that these arguments do not work for su�
iently high neutrino energies and/or for

thi
k media =⇒ in general absorption 
annot be de
oupled from refra
tion and mixing.

a

By using

another 
ant phrase of Wolfenstein, one 
an say that

�In some 
ir
umstan
es the matter 
ould matter.�

7.1 Generalized MSW equation.

Let

fναA(0) be the amplitude for the να zero-angle s
attering from parti
le A of the matter

ba
kground (A = e, p, n, . . .),

ρ(t) be the matter density (in g/
m

3

),

YA(t) be the number of parti
les A per amu in the point t of the medium, and

N0 = 6.02214199 × 1023


m

−3

be the referen
e parti
le number density (numeri
ally equal to

Avogadro's number).

Then the index of refra
tion of να for small |n− 1| (for normal media |n− 1|≪ 1) is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑

A

YA(t)fναA(0),

where pν is the neutrino momentum.

apν Imn ∝ σtot (pν) grows fast with energy while pν (Ren− 1) is a 
onstant or de
reasing fun
tion of Eν .
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Sin
e the amplitude fναA(0) is in general a 
omplex number, the index of refra
tion is also 
omplex.

Its real part is responsible for neutrino refra
tion while the imaginary part � for absorption. From the

opti
al theorem of quantum me
hani
s we have

Im [fναA(0)] =
pν

4π
σtotναA (pν).

This implies that

pν Im [nα(t)] =
1

2
N0ρ(t)

∑

A

YA(t)σtotναA (pν) =
1

2Λα (pν , t)
,

where

Λα (pν , t) =
1

Σtot

α (pν , t)
=
λtota (pν , t)

ρ(t)
.

is the mean free path [in 
m℄ of να in the point t of the medium. Sin
e the neutrino momentum, pν ,

is an extrinsi
 variable in Eq. (22), we will sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =

(
Sαα(t) Sαβ(t)

Sβα(t) Sββ(t)

)

of two mixed stable neutrino �avors να and νβ propagating through an absorbing medium 
an be

written as

i
d

dt
S(t) =

[
VH0V

T + W(t)
]

S(t), (S(0) = 1) . (22)
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Here

V=

(
cos θ sin θ

− sin θ cos θ

)

is the va
uum mixing matrix (0 ≤ θ ≤ π/2),
H0=

(
E1 0

0 E2

)

is the va
uum Hamiltonian for ν mass eigenstates,

Ei=
√
p2
ν +m2

i ≃ pν +m2
i /2pν is the energy of the νi eigenstate,

W(t)= −pν
(
nα(t) − 1 0

0 nβ(t) − 1

)

is the intera
tion Hamiltonian.

7.2 Master equation.

It is useful to transform MSW equation into the one with a tra
eless Hamiltonian. For this

purpose we de�ne the matrix

S̃(t) = exp

{
i

2

∫ t

0
Tr [H0 + W(t′)] dt′

}
S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1. (23)
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The e�e
tive Hamiltonian is de�ned by

H(t) =

(
q(t) − ∆c ∆s

∆s −q(t) + ∆c

)
,

∆c = ∆ cos 2θ, ∆s = ∆ sin 2θ, ∆ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1

2
pν [nβ(t) − nα(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] 6= Im [fναA(0)].

The neutrino os
illation probabilities are

P [να(0) → να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣
2

, (24)

where

A(t) = exp

[
−
∫ t

0

dt′

Λ(t′)

]
,

1

Λ(t)
=

1

2

[
1

Λα(t)
+

1

Λβ(t)

]
.

Owing to the 
omplex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no 
onventional relations between

Pαα′(t).
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Sin
e

qI(t) =
1

4

[
1

Λβ(t)
− 1

Λα(t)

]
,

the matrix H(t) be
omes Hermitian when Λα = Λβ. If this is the 
ase at any t, the ME

redu
es to the standard MSW equation and inelasti
 s
attering results in the 
ommon

exponential attenuation of the probabilities. From here, we shall 
onsider the more general

and more interesting 
ase, when Λα 6= Λβ.

7.3 Examples.

να − νs

This is the extreme example. Sin
e Λs = ∞, we have Λ = 2Λα and qI = −1/4Λα. So qI 6= 0

at any energy. Even without solving the evolution equation, one 
an expe
t the penetrability

of a
tive neutrinos to be essentially modi�ed in this 
ase be
ause, roughly speaking, they

spend a 
ertain part of life in the sterile state. In other words, sterile neutrinos �tow� their

a
tive 
ompanions through the medium as a tugboat. On the other hand, the a
tive neutrinos

�retard� the sterile ones, like a bulky barge retards its tugboat. As a result, the sterile

neutrinos undergo some absorption.

106



νe,µ − ντ

Essentially at all energies, σCCνe,µN
> σCCντN

. This is be
ause of large value of the τ lepton

mass, mτ , whi
h leads to several 
onsequen
es:

1. high neutrino energy threshold for τ produ
tion;

2. sharp shrinkage of the phase spa
es for CC ντN rea
tions;

3. kinemati
 
orre
tion fa
tors (∝ m2
τ ) to the nu
leon stru
ture fun
tions (the


orresponding stru
tures are negligible for e produ
tion and small for µ produ
tion).

The neutral 
urrent 
ontributions are 
an
eled out from qI . Thus, in the 
ontext of the

master equation, ντ 
an be treated as (almost) sterile within the energy range for whi
h

σCCνe,µN
≫ σCCντN

(see Figures in pp. 109�110).

νe − να

A similar situation, while in quite a di�erent and narrow energy range, holds in the 
ase of

mixing of νe with some other �avor. This is a parti
ular 
ase for a normal C asymmetri


medium, be
ause of the W boson resonan
e formed in the neighborhood of

Eres

ν = m2
W /2me ≈ 6.33 PeV through the rea
tions

νee
− → W− → hadrons and νee

− → W− → νℓℓ
− (ℓ = e, µ, τ).

Let's remind that σtotνee
≈ 250 σtotνeN

just at the resonan
e peak.
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7.4 Total 
ross se
tions.

A

ording to Albright and Jarlskog

a

dσCCν, ν
dxdy

=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q
2) are the nu
leon stru
ture fun
tions and Ai are the kinemati
 fa
tors

i = 1, . . . , 5). These fa
tors were 
al
ulated by many authors

b

and the most a

urate

formulas were given by Pas
hos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1 − y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(

1 − y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The 
ontributions proportional to m2
ℓ must vanish as Eν ≫ mℓ. However they remain

surprisingly important even at very high energies.

a

C. H. Albright and C. Jarlskog, Nu
l. Phys. B 84 (1975) 467�492; see also I. Ju, Phys. Rev. D 8 (1973)

3103�3109 and V. D. Barger et al., Phys. Rev. D 16 (1977) 2141�2157.

b

See previous footnote and also the more re
ent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya, Eur.

Phys. J. C 18 (2000) 405�416, hep-ph/9905475; N. I. Starkov, J. Phys. G 27 (2001) L81�L85; E. A. Pas
hos

and J. Y. Yu, Phys. Rev. D 65 (2002) 033002, hep-ph/0107261.
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7.5 Indi
es of refra
tion.

For Eν ≪ min

(
m2
W,Z/2mA

)

and for an ele
troneutral nonpolarized 
old medium, the qR is

energy independent. In the leading orders of the standard ele
troweak theory it is

qR =





1
2V0Ypρ for α = e and β = µ or τ ,

− 1
2aτV0 (Yp + bτYn) ρ for α = µ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = µ or τ and β = s,

where

V0 =
√

2GFN0 ≃ 7.63 × 10−14

eV

(
L0 =

2π

V0
≃ 1.62 × 104

km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ ) − 1]

4π sin2 θW
≃ 2.44 × 10−5,

bτ =
ln(1/rτ ) − 2/3

ln(1/rτ ) − 1
≃ 1.05,

α is the �ne-stru
ture 
onstant, θW is the weak-mixing angle and rτ = (mτ/mW )2

.
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Notes:

• For an isos
alar medium the |qR| is of the same order of magnitude for any pair of �avors but

νµ − ντ .

• For an isos
alar medium q
(νµ−ντ )
R /q

(νe−νµ)
R ≈ −5× 10−5

.

• For 
ertain regions of a neutron-ri
h medium the value of q
(νe−νs)
R may be
ome vanishingly

small. In this 
ase, the one-loop radiative 
orre
tions must be taken into a

ount.

• For very high energies the qR have to be 
orre
ted for the gauge boson propagators and

strong-intera
tion e�e
ts.

One 
an expe
t |qR| to be either an energy-independent or de
reasing fun
tion for any pair of mixed

neutrino �avors. On the other hand, there are several 
ases of mu
h 
urrent interest when |qI | either

in
reases with energy without bound (mixing between a
tive and sterile neutrino states) or has a

broad or sharp maximum (as for νµ − ντ or νe − νµ mixings, respe
tively).

Numeri
al estimations suggest that for every of these 
ases there is an energy range in whi
h qR and

qI are 
omparable in magnitude. Sin
e qR ∝ ρ and qI ∝ and are dependent upon the 
omposition of

the medium (YA) there may exist some more spe
i�
 situations, when

|qR| ∼ |qI | ∼ |∆|

or even

|qR| ∼ |∆c| and |qI | ∼ |∆s| .

If this is the 
ase, the refra
tion, absorption and mixing be
ome interestingly superimposed.
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7.6 Eigenproblem and mixing matrix in matter.

7.6.1 Eigenvalues.

The matrix H(t) has two 
omplex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the 
hara
teristi
 equation

ε2 = (q − q+) (q − q−) ,

where

q± = ∆c ± i∆s = ∆e±2iθ.

The solution is

ε2
R =

1

2

(
ε2

0 − q2
I

)
+

1

2

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s),

εI =
qI (qR − ∆c)

εR
(provided qR 6= ∆c) ,

with

ε0 =
√

∆2 − 2∆cqR + q2
R ≥ |∆s|, sign (εR)

def

= sign(∆) ≡ ζ.

(At that 
hoi
e ε = ∆ for va
uum and ε = ζε0 if qI = 0.)
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In the vi
inity of the MSW resonan
e, qR = qR(t⋆) = ∆c

lim
qR→∆c±0

εR= ∆s

√
max (1 − ∆2

I/∆
2
s, 0),

lim
qR→∆c±0

εI= ±ζ∆I

√
max (1 − ∆2

s/∆
2
I , 0),

where ∆I = qI(t⋆). Therefore the resonan
e value of |εR| (whi
h is inversely proportional to

the neutrino os
illation length in matter) is always smaller than the 
onventional MSW value

|∆s| and vanishes if ∆2
I < ∆2

s (εI remains �nite in this 
ase). In neutrino transition through

the region of resonan
e density ρ = ρ(t⋆), εI undergoes dis
ontinuous jump while εR remains


ontinuous. The 
orresponding 
uts in the q plane are pla
ed outside the 
ir
le |q| ≤ |∆|. If

∆2
I > ∆2

s, the imaginary part of ε vanishes while the real part remains �nite.

A distin
tive feature of the 
hara
teristi
 equation is the existen
e of two mutually 
onjugate

�super-resonan
e� points q± in whi
h ε vanishes giving rise to the total degenera
y of the

levels of the system (impossible in the �standard MSW� solution). Certainly, the behavior of

the system in the vi
inity of these points must be dramati
ally di�erent from the 
onventional

pattern.

The �super-resonan
e� 
onditions are physi
ally realizable for various meaningful

mixing s
enarios.
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Some useful relations:

ε2
R =

2q2
I

(
ε2

0 − ∆2
s

)
√

(ε2
0 − q2

I )
2

+ 4q2
I (ε2

0 − ∆2
s) − ε2

0 + q2
I

,

εI =

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s) − ε2
0 + q2

I

2qI (qR − ∆c)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR − ∆c) εR

ε2
R + ε2

I

,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR − ∆c) εI

ε2
R + ε2

I

,

Re

[
q(t) − ∆c

ε

]
=

(
qR − ∆c

εR

)(
ε2
R + q2

I

ε2
R + ε2

I

)
,

Im

[
q(t) − ∆c

ε

]
=

(
qI
εR

)(
ε2
R − ε2

0 + ∆2
s

ε2
R + ε2

I

)
,

(qR − ∆c)
2

= ε2
0 − ∆2

s.

qR

qI

− |∆  |s

   |∆  |s

∆c

2θ

|∆|
0

Zeros and 
uts of ε in the q plane for ∆c >

0. The 
uts are pla
ed outside the 
ir
le

|q| ≤ |∆| parallel to axis qR = 0. The MSW

resonan
e point is (∆c, 0) and the two �super-

resonan
e� points are (∆c,±∆s).
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7.6.2 Eigenstates.

In order to simplify the solution to the eigenstate problem we'll assume that the phase

traje
tory q = q(t) does not 
ross the points q± at any t. In non-Hermitian quantum

dynami
s one has to 
onsider the two pairs of instantaneous eigenve
tors |Ψ±〉 and |Ψ±〉

whi
h obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (25)

and (for q 6= q±) form a 
omplete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+| + |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenve
tors are de�ned up to a gauge transformation

|Ψ±〉 7→ eif± |Ψ±〉, |Ψ±〉 7→ e−if∗
± |Ψ±〉,

with arbitrary 
omplex fun
tions f±(t) su
h that Im (f±) vanish as q = 0.a Thus it is

su�
ient to �nd any parti
ular solution of Eqs. (25). Taking into a

ount that H† = H∗

, we

may set |Ψ±〉 = |Ψ∗
±〉 and hen
e the eigenve
tors 
an be found from the identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.

a

For our aims, the 
lass of the gauge fun
tions may be restri
ted without loss of generality by the 
ondition

f±|q=0 = 0.
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Setting |Ψ±〉 = (v±,±v∓)
T

we arrive at the equations

v2
± =

ε± (q − ∆c)

2ε
, v+v− =

∆s

2ε
,

a parti
ular solution of whi
h 
an be written as

v+=

√∣∣∣∣
ε+ q − ∆c

2ε

∣∣∣∣ e
i(ϕ−ψ)/2,

v−= ζ

√∣∣∣∣
ε− q + ∆c

2ε

∣∣∣∣ e
i(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q − ∆c) = − arg(ε− q + ∆c) = arctan

(
qI
εR

)
,

ψ = arg(ε) = arctan

(
εI
εR

)
.

We have �xed the remaining gauge ambiguity by a 
omparison with the va
uum 
ase.

117



7.6.3 Mixing angle in matter.

It may be sometimes useful to de�ne the 
omplex mixing angle in matter Θ = ΘR + iΘI by the

relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
∆s

ε
, cos 2Θ =

∆c − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ)≡ ΘR =
1

2
arctan

[
(qI −∆s) εR − (qR −∆c) εI

(qR −∆c) εR + (qI −∆s) εI

]
,

Im(Θ)≡ ΘI =
1

4
ln

[
ε2

R + ε2
I

(qR −∆c)2 + (qI −∆s)2

]
.

cosΘ= cosΘR coshΘI − i sinΘR sinhΘI ,

sinΘ= sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the pres
ription for the sign of εR, one 
an verify that Θ = θ if q = 0 (va
uum


ase) and Θ = 0 if ∆s = 0 (no mixing or m2
1 = m2

2). It is also 
lear that Θ be
omes the standard

MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).
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7.6.4 Mixing matrix in matter.

In order to build up the solution to ME for the

nondegenerated 
ase one has to diagonalize the

Hamiltonian. Generally a non-Hermitian matrix


annot be diagonalized by a single unitary

transformation. But in our simple 
ase this


an be done by a 
omplex orthogonal matrix

(extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =

(
v− v+

−v+ v−

)

=

(
cosΘ sinΘ

− sinΘ cosΘ

)
.

Properties of U:

U
T

HU = diag (−ε, ε),
U

T
U = 1, U|q=0 = V.

From CE it follows that

∂ε

∂q
=

(q −∆c)

ε

and thus

∂v±
∂q

= ±∆2
sv∓

2ε2
.

We therefore have

iUT
U̇ = −Ω

(
0 −i
i 0

)
= −Ωσ

2
,

Ω =
q̇∆s

2ε2
=
i

4

d

dt
ln

(
q − q+

q − q−

)
.

Properties of Uf :

U
T
f HUf = diag (−ε, ε),

U
T
f Uf = 1, Uf |q=0 = V,

iUT
f U̇f = −Ωe−if σ

2
eif − ḟ .
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7.7 Adiabati
 solution.

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)] Xf (t)UT
f (0). (26)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the 
omplex dynami
al phase,

de�ned by

ΦR(t) =

∫ t

0

εR(t′)dt′, ΦI(t) =

∫ t

0

εI(t
′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)σ2e
−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It 
an be proved now that the right side of Eq. (26) is gauge-invariant i.e. it does not depend

on the unphysi
al 
omplex phases f±(t). This 
ru
ial fa
t is 
losely related to the absen
e of

the Abelian topologi
al phases in the system under 
onsideration.
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Finally, we 
an put f± = 0 in Eq. (26) and the result is

S̃(t) = U(t) exp [−iΦ(t)] X(t)UT (0), (27a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (27b)

These equations, being equivalent to the ME, have nevertheless a restri
ted range of pra
ti
al

usage on a

ount of poles and 
uts as well as de
aying and in
reasing exponents in the

�Hamiltonian� ΩF.

7.7.1 Adiabati
 theorem.

The adiabati
 theorem of Hermitian quantum me
hani
s 
an almost straightforwardly be extended to

ME under the requirements:

(a) the potential q is a su�
iently smooth and slow fun
tion of t;

(b) the imaginary part of the dynami
al phase is a bounded fun
tion i.e. limt→∞ |ΦI(t)| is �nite;

(
) the phase traje
tory q = q(t) is pla
ed far from the singularities for any t.

The �rst requirement breaks down for a 
ondensed medium with a sharp boundary or layered

stru
ture (like the Earth). If however the requirement (a) is valid inside ea
h layer (ti, ti+1), the

problem redu
es to Eqs. (27) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0),

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.
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The requirement (b) alone is not too restri
tive 
onsidering that for many astrophysi
al obje
ts (like

stars, gala
ti
 nu
lei, jets and so on) the density ρ exponentially disappears to the periphery and, on

the other hand, εI → 0 as ρ→ 0. In this instan
e, the fun
tion ΦI(t) must be t independent for

su�
iently large t. But, in the 
ase of a steep density pro�le, the requirements (a) and (b) may be

in
onsistent. The important 
ase of violation of the requirement (
) is the subje
t of a spe
ial study

whi
h is beyond the s
ope of this study.

It is interesting to note in this 
onne
tion that, in the Hermitian 
ase, a general adiabati
 theorem has been

proved without the traditional gap 
ondition

a

.

a

J. E. Avron and A. Elgart, Commun. Math. Phys. 203 (1999) 445�467.

122



7.7.2 The solution.

Presume that all ne
essary 
onditions do hold for 0 ≤ t ≤ T . Then, in the adiabati
 limit, we 
an put

Ω = 0 in Eq. (27b). Therefore X = 1 and Eq. (27a) yields

S̃αα(t)= v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t)= v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t)= v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t)= v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),

Taking into a

ount Eq. (24) we obtain the survival and transition probabilities:

Pαα(t) = A(t)
{[
I+

+ (t)eΦI(t) + I−− (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)
{[
I−+ (t)eΦI(t) − I+

−(t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]
}
,

Pβα(t) = A(t)
{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)
{[
I−− (t)eΦI (t) + I+

+ (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(28)

where we have denoted for 
ompa
tness (ς, ς ′ = ±)

Iς′

ς (t) = |vς(0)vς′ (t)|, ϕ±(t) =
ϕ(0) ± ϕ(t)

2
, I2(t) = 4I+

+ (t)I−− (t) = 4I−+ (t)I+
−(t) =

∆2
s

|ε(0)ε(t)|
.
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7.7.3 Limiting 
ases.

In the event that the 
onditions

∣∣∣∣
1

Λβ(t)
− 1

Λα(t)

∣∣∣∣ ≪ 4ε0(t) and t ≪ min [Λα(t), Λβ(t)]

are satis�ed for any t ∈ [0, T ], the formulas (28) redu
e to the standard MSW adiabati


solution

Pαα(t)= Pββ(t) =
1

2
[1 + J(t)] − I2

0 (t) sin2 [Φ0(t)],

Pαβ(t)= Pβα(t) =
1

2
[1 − J(t)] + I2

0 (t) sin2 [Φ0(t)],





(MSW)

where

J(t) =
∆2 − ∆c [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

∆2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t′)dt′.

Needless to say either of the above 
onditions or both may be violated for su�
iently high

neutrino energies and/or for thi
k media, resulting in radi
al di�eren
es between the two

solutions. These di�eren
es are of obvious interest to high-energy neutrino astrophysi
s.
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It is perhaps even more instru
tive to examine the distin
tions between the general adiabati


solution (28) and its �
lassi
al limit�

Pαα(t)= exp

[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t)= exp

[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,





(∆s = 0)

whi
h takes pla
e either in the absen
e of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ ∆s, the 
lassi
al limit is the exa
t solution to the master equation (for

∆s = 0). Therefore it 
an be derived dire
tly from Eq. (23). To make 
ertain that the

adiabati
 solution has 
orre
t 
lassi
al limit, the following relations are useful:

lim
∆s→0

ε(t) = ζζR [q(t) − ∆c]

and

lim
∆s→0

|v±( t)|2 =
1

2
(ζζR ± 1),

where

ζR = sign [qR(t) − ∆c].
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7.8 Matter of 
onstant density and 
omposition.

In this simple 
ase, the adiabati
 approximation be
omes exa
t and thus free from the

above-mentioned 
on
eptual di�
ulties. For de�niteness sake we assume Λα < Λβ (and thus

qI < 0) from here. The opposite 
ase 
an be 
onsidered in a similar way. Let's denote

1

Λ±

=
1

2

(
1

Λα
+

1

Λβ

)
± ξ

2

(
1

Λα
− 1

Λβ

)
,

I2
± =

1

4

(
1 +

ε2
0 + q2

I − ∆2
s

ε2
R + ε2

I

)
± ξ

2

(
ε2
R + q2

I

ε2
R + ε2

I

)
,

L =
π

|εR| and ξ =

∣∣∣∣
qR − ∆c

εR

∣∣∣∣.

As is easy to see,

I±
± =




I± if sign (qR − ∆c) = +ζ,

I∓ if sign (qR − ∆c) = −ζ,

I−
+ = I+

− =
√
I+I− =

I

2
=

∣∣∣∣
∆s

2ε

∣∣∣∣

and sign(ϕ) = −ζ.
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By applying the above identities, the neutrino os
illation probabilities 
an be written as

Pαα(t)=
(
I+e

−t/2Λ+ + I−e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t)=
(
I−e

−t/2Λ+ + I+e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t)= Pβα(t) =
1

4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The di�eren
e between the survival probabilities for να and νβ is

Pαα(t) − Pββ(t) = −ζRe

(
q − ∆c

ε

)(
e−t/2Λ− − e−t/2Λ+

)

+I2e−t/Λ sinϕ sin

(
2πt

L

)
.
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7.8.1 Case |q| & |∆s|.

Let's examine the 
ase when Λ+ and Λ− are vastly di�erent in magnitude. This will be true

when Λβ ≫ Λα and the fa
tor ξ is not too small. The se
ond 
ondition holds if qR is away

from the MSW resonan
e value ∆c and the following dimensionless parameter

κ =
∆s

|q| ≈ 0.033 × sin 2θ

(
∆m2

10−3

eV

2

)(
100 GeV

Eν

)(
V0

|q|

)

is su�
iently small. In fa
t we assume |κ| . 1 and impose no spe
i�
 restri
tion for the ratio

qR/qI . This spans several possibilities:

⋆ small ∆m2

,

⋆ small mixing angle,

⋆ high energy,

⋆ high matter density.

The last two possibilities are of spe
ial interest be
ause the inequality |κ| . 1 may be ful�lled

for a wide range of the mixing parameters ∆m2

and θ by 
hanging Eν and/or ρ. In other

words, this 
ondition is by no means arti�
ial or too restri
tive.
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After elementary while a bit tedious 
al
ulations we obtain

ξ = 1 − 1

2
κ

2 + O
(
κ

3
)
, I2 = κ

2 + O
(
κ

3
)
,

I+ = 1 + O
(
κ

2
)
, I− =

1

4
κ

2 + O
(
κ

3
)
;

Λ ≈ 2Λα, Λ+ ≈
(

1 +
κ

2

4

)
Λα ≈ Λα, Λ− ≈

(
4

κ2

)
Λα ≫ Λα.

Due to the wide spread among the length/time s
ales Λ±, Λ and L as well as among the

amplitudes I± and I, the regimes of neutrino os
illations are quite diverse for di�erent ranges

of variable t.

With referen
e to Figures in pp. 130�133, one 
an see a regular gradation from slow (for

t . Λµ) to very fast (for t & Λµ) neutrino os
illations followed by the asymptoti


nonos
illatory behavior:

Pµµ(t) ≃ κ
4

16
e−t/Λ− ,

Pss(t) ≃ e−t/Λ− ,

Pµs(t) = Psµ(t) ≃ κ
2

4
e−t/Λ− .
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 250 GeV, ρ = 1 g/
m

3

).
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 1000 GeV, ρ = 0.2 g/
m

3

).
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 100 TeV, ρ = 10−3

g/
m

3

).
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 100 TeV, ρ = 3× 10−4

g/
m

3

).
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The me
hanism under dis
ussion may be released in the Thorne�




Zytkow obje
ts (T




ZO) � binaries

with a neutron star submerged into a red supergiant 
ore. Figure shows an artisti
 view of how a

T




ZO 
ould be formed.

[See, e.g., URLs: 〈 http://astro�shki.net/universe/hv-2112-neveroyatnyj-obekt-torna-zhitkov/ 〉 and

〈 http://www.de
ifrandoastronomia.
om.br/2017/01/uma-estrela-dentro-de-outra-
onhe
a-hv.html〉.℄

The very bright red star HV2112 in the Small Magellani
 Cloud (see next slide) 
ould be a massive

supergiant-like star with a degenerate neutron 
ore (T




ZO). With its luminosity of over 105L⊙, it


ould also be a super asymptoti
 giant bran
h star (SAGB), a star with an oxygen/neon 
ore

supported by ele
tron degenera
y and undergoing thermal pulses with third dredge up.
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Both T




ZO and SAGB stars are expe
ted to be rare. Cal
ulations performed by Ch. A. Tout et al.

a

indi
ate that HV2112 is likely a genuine T




ZO. But a mu
h more likely explanation is that HV2112 is

an intermediate mass (∼ 5M⊙) AGB star; a new T




ZO 
andidate (HV11417) is re
ently suggested.

b

a

Ch. A. Tout, A. N.




Zytkow, R. P. Chur
h, & H. H. B. Lau, �HV2112, a Thorne�




Zytkow obje
t or a super

asymptoti
 giant bran
h star�, Mon. Not. Roy. Astron. So
. 445 (2014) L36�L40, arXiv:1406.6064 [astro-ph.HE℄.

b

E. R. Beasor, B. Davies, I. Cabrera-Ziri, & G. Hurst , �A 
riti
al re-evaluation of the Thorne�




Zytkow obje
t


andidate HV 2112�, arXiv:1806.07399 [astro-ph.SR℄.
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7.8.2 Degenerate 
ase.

The 
onsideration must be 
ompleted for the 
ase of degenera
y. Due to the 
ondition

qI < 0, the density and 
omposition of the �degenerate environment� are �ne-tuned in su
h a

way that

q = q−ζ = ∆c − i |∆s|.

The simplest way is in 
oming ba
k to the master equation. Indeed, in the limit of q = q−ζ ,

the Hamiltonian redu
es to

H = |∆s|
(

−i ζ

ζ i

)
≡ |∆s| hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1 − it |∆s| hζ

and thus

Pαα(t) = (1 − |∆s| t)2
e−t/Λ,

Pββ(t) = (1 + |∆s| t)2
e−t/Λ,

Pαβ(t) = Pβα(t) = (∆st)
2
e−t/Λ.
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Sin
e 1/Λβ = 1/Λα − 4 |∆s|, the ne
essary 
ondition for the total degeneration is

4Λα |∆s| ≤ 1

and thus

1/Λ = 1/Λα − 2 |∆s| ≥ 2 |∆s|.

The equality only o

urs when νβ is sterile.

The degenerate solution must be 
ompared with the standard MSW solution

Pαα(t) = Pss(t) =
1

2
[1 + cos (2∆st)],

Pαs(t) = Psα(t) =
1

2
[1 − cos (2∆st)],





(MSW)

and with the 
lassi
al penetration 
oe�
ient

exp (−t/Λα)

(with 1/Λα numeri
ally equal to 4 |∆s|) relevant to the transport of unmixed a
tive neutrinos

through the same environment.
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Survival and transition probabilities for να ↔ νs os
illations in the 
ase of degenera
y (q = q−ζ). The

standard MSW probabilities (dotted and dash-dotted 
urves) together with the penetration


oe�
ient for unmixed να (dashed 
urve) are also shown.
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7.9 Con
lusions.

We have 
onsidered, on the basis of the MSW evolution equation with 
omplex indi
es of

refra
tion, the 
onjoint e�e
ts of neutrino mixing, refra
tion and absorption on high-energy

neutrino propagation through matter. The adiabati
 solution with 
orre
t asymptoti
s in the

standard MSW and 
lassi
al limits has been derived. In the general 
ase the adiabati


behavior is very di�erent from the 
onventional limiting 
ases.

A noteworthy example is given by the a
tive-to-sterile neutrino mixing. It has been

demonstrated that, under proper 
onditions, the survival probability of a
tive neutrinos

propagating through a very thi
k medium of 
onstant density may be
ome many orders of

magnitude larger than it would be in the absen
e of mixing. The quantitative 
hara
teristi
s

of this phenomenon are highly responsive to 
hanges in density and 
omposition of the

medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysi
al sour
es of high-energy neutrinos, the e�e
t

may open a new window for observational neutrino astrophysi
s.
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The standard (ββ)2ν is observed for a dozen isotopes with T 2ν
1/2

∼ 1019−25

years. Some most re
ent

averaged/re
ommended T 2ν
1/2

are 
olle
ted in Table and are 
ompared with theoreti
al predi
tions.

T 2ν
1/2 (years)

Element Isotope Measured Cal
ulated

Cal
ium

48
20Ca 5.3+1.2

−0.8 × 1019 6× 1018 − 5× 1020

Germanium

76
32Ge (1.88± 0.08)× 1021 7× 1019 − 6× 1022

Selenium

82
34Se 8.7+0.2

−0.1 × 1019 3× 1018 − 6× 1021

Zir
onium

96
40Zr (2.3± 0.2)× 1019 3× 1017 − 6× 1020

Molybdenum

100
42Mo 7.06+0.15

−0.12 × 1018 1× 1017 − 2× 1022

Molybdenum�Ruthenium

100
42Mo−100

44Ru(0+
1 ) 6.7+0.5

−0.4 × 1020 5× 1019 − 2× 1021

Cadmium

116
48Cd (2.69± 0.09)× 1019 3× 1018 − 2× 1021

Tellurium

128
52Te (2.25± 0.09)× 1024 9× 1022 − 3× 1025

Tellurium

130
52Te (7.91± 0.21)× 1020 2× 1019 − 7× 1020

Xenon

136
54Xe (2.18± 0.05)× 1021 −

Neodymium

150
60Nd (9.34± 0.65)× 1018 6× 1016 − 4× 1020

Neodymium�Samarium

150
60Ne−150

62Sm(0+
1 ) 1.2+0.3

−0.2 × 1020 −

Uranium

238
92U (2.0± 0.6)× 1021 2× 1019 − 2× 1023

[From A. S. Barabash, �Pre
ise half-life values for two-neutrino double-β de
ay: 2020 review,� Universe 6 (2020) 159,

arXiv:2009.14451 [nu
l-ex℄ (experiment); E. Fiorini, �Experimental prospe
ts of neutrinoless double beta de
ay,� Phys.

S
ripta T121 (2005) 86�93 (theory; of 
ourse these 
al
ulations are outdated, but I did not �nd a fresh review).℄
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Best 
urrent results on 0νββ de
ay. The T 0ν
1/2 and 〈mββ〉(≡ 〈|mββ |〉) limits are at 90% C.L.

Element Isotope Q2β (keV) T 0ν
1/2 (years) 〈mββ〉 (eV) Experiment

Cal
ium

48

Ca 4267.98 > 5.8× 1022 < 3.5− 22 ELEGANT-IV

Germanium

76

Ge 2039.00 > 8.0× 1025 < 0.12− 0.26 GERDA

> 1.9× 1025 < 0.24− 0.52 Majorana

Demonstrator

Selenium

82

Se 2997.9 > 3.6× 1023 < 0.89− 2.4 NEMO-3

Zir
onium

96

Zr 3355.85 > 9.2× 1021 < 7.2− 19.5 NEMO-3

Molybdenum

100

Mo 3034.40 > 1.1× 1024 < 0.33− 0.62 NEMO-3

Cadmium

116

Cd 2813.50 > 2.2× 1023 < 1.0− 1.7 AURORA

Tellurium

128

Te 866.6 > 1.1× 1024 − Geo
hemi
al

Tellurium

130

Te 2527.52 > 1.5× 1025 < 0.11− 0.52 CUORE

Xenon

136

Xe 2457.83 > 1.07× 1026 < 0.061− 0.165 KamLAND-Zen

> 1.8× 1025 < 0.15− 0.40 EXO-200

Neodymium

150

Nd 3371.38 > 2.0× 1022 < 1.6− 5.3 NEMO-3

The 〈mββ〉 limits are listed as reported in the original publi
ations.

a

[M. J. Dolinski, A. W. P. Poon, & W. Rodejohann, �Neutrinoless double-beta de
ay: Status and prospe
ts,� Ann. Rev.

Nu
l. Part. S
i. 69 (2019) 219�251, arXiv:1902.04097 [nu
l-ex℄.℄

a

For a bit another approa
h, see A. S. Barabash, �Brief review of double beta de
ay experiments�,

arXiv:1702.06340 [nu
l-ex℄; the Q values shown in the Table are borrowed from that paper.
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lightest neutrino mass, m (eV)
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2
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13 cos 2θ12

m1c
2
12c

2
13

∆m2
A c2

13

m0

− ∆m2 + m2
1 s2

12c
2
13

m 0
1−t  −2

12 2s2
13

1+t212

− ∆m2
A + m2

1 s2
13± ∆m2

A s2
13

m   > 0

NH:

m1 = m,

m2
2 = m2 + ∆m2

⊙,

m2
3 = m2 + ∆m2

A

,
IH:

m2
1 = m2 + ∆m2

A

,

m2
2 = m2 + ∆m2

A

+ ∆m2
⊙,

m3 = m.

The main properties of |mββ | vs. smallest neutrino mass (m). The value of sin2 2θ13 = 0.02 has been


hosen, m0 is the 
ommon mass s
ale (measurable in KATRIN or by 
osmology via

∑
i
mi/3) for

quasi-degenerate masses m1 ≃ m2 ≃ m3 ≡ m0 ≫
√

∆m2

A

(
orre
tions are small as m & 0.03 eV).

[Taken from M. Lindner, A. Merle, and W. Rodejohann,�Improved limit on θ13 and impli
ations for neutrino masses in

neutrinoless double beta de
ay and 
osmology,� Phys. Rev. D 73 (2006) 053005, hep-ph/0512143.℄
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S
he
hter-Valle (bla
k-box) theorem.

Current parti
le models (GUTs, R-parity violating SUSY, et
.) provide me
hanisms, other than

neutrino mass, whi
h 
an 
ontribute to or even dominate the 0νββ pro
ess (see example below).

a

R-parity violating 
ontribution to 0νββ de
ay mediated by sfermions and neutralinos (gluinos).

[Figure is borrowed from J. D. Vergados, H. Ejiri, and F. Simkovi
, �Theory of neutrinoless double-beta de
ay,� Rep.

Prog. Phys. 75 (2012) 106301, arXiv:1205.0649 [hep-ph℄, where many other examples 
an be found.℄
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S
he
hter and Valle proved

a

that

for any realisti
 gauge theory in
luding the usual (SM)

W -gauge-�eld intera
tion with left-handed e and νe and

with u and d quarks, if 0νββ-de
ay takes pla
e, regardless

of the me
hanism 
ausing it, the neutrino is Majorana

parti
le with nonzero mass.

The reason is that one 
an 
onsider the 0νββ elementary

intera
tion pro
ess dd→ uuee as generated by the bla
k

box, whi
h 
an in
lude any me
hanism. Then the legs of

the bla
k box 
an be arranged to form a diagram whi
h

generates νe → νe transitions. This diagram 
ontributes

to the Majorana mass of the ele
tron neutrino through

radiative 
orre
tions at some order of perturbation theory,

even if there is no tree-level Majorana neutrino mass term.

It is however 
lear that the bla
k-box amplitudes are

strongly suppressed (at least by a fa
tor ∝ G2
F ) with

respe
t to the standard tree-level 0νββ-de
ay amplitude.

Model 
al
ulations show that the standard amplitude


orresponding to a value of |mββ | = O(0.1) eV generates

radiatively a Majorana mass O(10−24) eV.

νe

νe

W

W

νe

νe

W

W

Generic

Example (R SUSY)

a

J. S
he
hter and J. W. F. Valle, �Neutrinoless double-β de
ay in SU(2)×U(1) theories,� Phys. Rev. D 25

(1982) 2951�2954. A generalization to 3ν (mixed) 
ase was made by M. Hirs
h, H. V. Klapdor-Kleingrothaus,

and S. G. Kovalenko, �On the SUSY a

ompanied neutrino ex
hange me
hanism of neutrinoless double beta

de
ay,� Phys. Lett. B 372 (1996) 181�186, Phys. Lett. B 381 (1996) 488 (erratum), hep-ph/9512237.
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7.10 Double see-saw & inverse see-saw.

The see-saw 
an be implemented by introdu
ing additional neutrino singlets beyond the three

RH neutrinos involved into the see-saw type I. One have to distinguish between

• RH neutrinos νR, whi
h 
arry B − L and perhaps (not ne
essary) form SU(2)R doublets

with RH 
harged leptons, and

• Neutrino singlets νS , whi
h have no Yukawa 
ouplings to the LH neutrinos but may


ouple to νR.

If the singlets have nonzero Majorana masses MSS while the RH neutrinos have a zero

Majorana mass, MRR = 0, the see-saw me
hanism may pro
eed via mass 
ouplings of the

singlets to RH neutrinos, MRS. In the basis (νL,νR,νS), the 9 × 9 mass matrix is




0 mLR 0

mLR 0 MRS

0 MT
RS MSS


.

Assuming that the eigenvalues of MSS are mu
h smaller than the eigenvalues of MRS , the

light physi
al LH Majorana neutrino masses are then doubly suppressed,

M1 ≃ mLRM−1
RSMSS

(
MT

RS

)−1
mT
LR, M2

2 ≃ M2
RS + m2

LR.

This s
enario is usually used in string inspired models [see, e.g., R.N.Mohapatra & J.W.Valle, Phys. Rev.

D 34 (1986) 1642; M.C.Gonzalez-Gar
ia & J.W.F.Valle, Phys. Lett. B 216 (1989) 360℄.
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7.11 Radiative see-saw.

An alternative me
hanism relies on the radiative generation of neutrino masses [H.Georgi & S.L.Glashow,

Phys. Rev. D 7 (1973) 2487; P.Cheng & L.-F.Li, Phys. Rev. D 17 (1978) 2375; Phys. Rev. D 22 (1980) 2860; A.Zee,

Phys. Lett. B 93 (1980) 389;. . ..℄ In this s
heme, the neutrinos are massless at the tree level, but pi
k up

small masses due to loop 
orre
tions.

In a typi
al model [K.S. Babu & V.S. Mathur,

Phys. Rev. D 11 (1988) 3550℄ the see-saw

formula is modi�ed as

mν ∼
(
α

π

)
m2

l

M
,

where the prefa
tor α/π ≈ 2× 10−3

arises due to the loop stru
ture of the

neutrino mass diagram. Light neutrinos

are now possible even for relatively �light�

mass s
ale M of �new physi
s.�

The s
alar se
tor 
onsists of the multiplets

ν
L

ν
LℓR ℓL

η
L
+Φ1

+

<Φ >1
0

<χ >
L

0 <χ >
R

0

χL,R =
(
χ+, χ0

)
L,R

, Φ =

(
Φ0

1 Φ+
2

Φ−1 Φ0
2

)
, η+

L,R.

The diagram in the �gures is responsible for generation of Majorana masses for νL. The analogous diagram is

obtained by the repla
ement L → R and Φ+
1 → Φ+

2 .
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7.12 TeV-s
ale gauged B − L symmetry with Inverse see-saw.

Consider brie�y one more inverse see-saw model [S.Khalil, Phys. Rev. D 82 (2010) 077702℄.

The model is based on the following:

(i) The SM singlet Higgs boson, whi
h breaks the B − L gauge symmetry, has B − L unit 
harge.

(ii) The SM singlet fermion se
tor in
ludes two singlet fermions S± with B − L 
harges ±2 with

opposite matter parity.

The Lagrangian of neutrino masses, in the �avor basis, is given by

νLmDνR + νc
RMNS− + µsS−S−.

In the limit µs → 0, whi
h 
orresponds to the unbroken (−1)L+S
symmetry, the light neutrinos

remain massless. Therefore, a small nonvanishing µs 
an be 
onsidered as a slight breaking of a this

global symmetry and the smallness of µs is natural. Small µs 
an also be generated radiatively.

In the basis (νL,ν
c
R,S−), the 9× 9 mass matrix is




0 mD 0

mT
D 0 MN

0 MT
N µs


.

So, up to the notation, it reprodu
es all the properties of the double see-saw.
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