Energy reconstruction with machine learning techniques in JUNO: aggregated features approach

Arsenii Gavrikov^{1,2}, Yury Malyshkin², Fedor Ratnikov¹

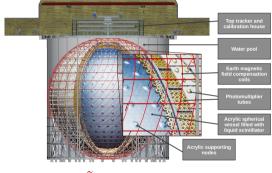
¹HSE University, Moscow, Russia

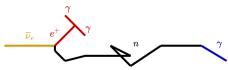
²Joint Institute for Nuclear Research, Dubna, Russia

Moscow International School of Physics 2022, 24 July – 2 August 2022

Introduction to the JUNO experiment

- Jiangmen Underground Neutrino Observatory:
 - multipurpose experiment
 - 53 km away from 8 reactor cores in China
 - data taking expected in \sim 2023
 - JUNO Collaboration:
 - 77 institutions
 - 697 collaborators
- The main goals of JUNO:
 - neutrino mass ordering (3σ in 6 years)
 - precise measure of oscillation parameters $\sin^2 \theta_{12}$, Δm_{21}^2 , Δm_{31}^2
- The Central Detector:
 - detection channel: $\overline{\nu}_e + p \rightarrow e^+ + n$;
 - deposited energy converts to optical light
 - the largest liquid scintillator detector: 20 kt
 - 77.9% photo-coverage: 18k 20", 26k 3" photo-multiplier tubes (PMTs)



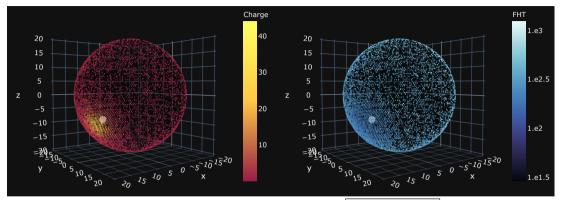


Machine Learning (ML) in HEP

- ML methods are used at all levels of data processing in many HEP experiments:
 - signal/background discrimination
 - event selection in the trigger
 - event simulation
 - anomaly detection
 - identification, etc.
- Why is ML useful for HEP?
 - Faster. More precisely, with proper training
 - **Adequate** for many purposes simultaneously: event simulation, analysis, reconstruction, identification, etc.
 - GPU friendly by construction, which is important for big data processing
- Machine-learning algorithms use statistics to find patterns in massive amounts of data
- Our task is a supervised learning problem (regression)

3/14

Problem statement



An example of a positron event with deposited energy $\sim\!\!6$ MeV. The grey sphere — the primary vertex.

Charge at PMT

First Hit Time (FHT) at PMT

We want to reconstruct:

Deposited energy E_{dep} with resolution 3% @ 1 MeV

Datasets

- Two datasets: for training and for testing
- generated by the Monte Carlo method

- full detector and electronics simulation
- using the official JUNO software

Data description:

- positron events
- uniformly spread in the volume of the central detector
- ullet $E_{
 m kin} \in [0,10]$ MeV. $E_{
 m dep} = E_{
 m kin} + 1.022$ MeV
- Training dataset:
 - 5 million events
 - $oldsymbol{\circ}$ uniformly distributed in kinetic energy $E_{
 m kin}$

Testing dataset:

- subsets with discrete kinetic energies:
- **1** 0, 0.1, 0.3, 0.6, 1, 2, ..., 10 [MeV]
- **5** $\sum = 1.4$ **million** events: each subset contains 100k

Aggregated features

We use aggregated information from the whole array of PMTs as features for models:

- AccumCharge the accumulated charge on fired PMTs
- nPMTs the total number of fired PMTs
- 3 Coordinates of the center of charge:

$$(x_{ ext{cc}},\ y_{ ext{cc}},\ z_{ ext{cc}}) = \vec{r}_{ ext{cc}} = rac{\sum_{i=1}^{N_{ ext{PMTs}}} \vec{r}_{ ext{PMT}_i} \cdot n_{ ext{p.e.},i}}{\sum_{i=1}^{N_{ ext{PMTs}}} n_{ ext{p.e.},i}}$$

and its radial component: $R_{\rm cc} = |\vec{r}_{\rm cc}|$

Coordinates of the center of FHT:

$$(x_{
m cht},\ y_{
m cht},\ z_{
m cht}) = ec{r}_{
m cht} = rac{1}{\sum_{i=1}^{N_{
m PMTs}}rac{1}{t_{
m ht,}i+c}} \sum_{i=1}^{N_{
m PMT}i}rac{ec{r}_{
m PMT_i}}{t_{
m ht,}i+c},$$

and its radial component: $R_{\rm cht} = |\vec{r}_{\rm cht}|$

$$\theta_{\rm cc} = \arctan \frac{\sqrt{x_{\rm cc}^2 + y_{\rm cc}^2}}{z_{\rm cc}}$$

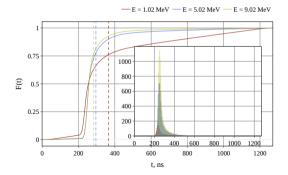
with 7 similar features for the components of the center of FHT

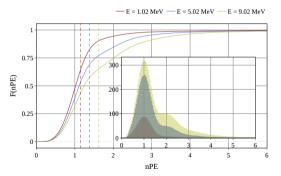
30-07-2022

Aggregated features

- Percentiles of FHT and charge distributions:
 - {ht_{2%}, ht_{5%}, ht_{10%}, ht_{15%}, ..., ht_{90%}, ht_{95%}}
 - $\bullet \ \{pe_{2\%}, pe_{5\%}, pe_{10\%}, pe_{15\%}, ..., pe_{90\%}, pe_{95\%}\}$

- Differences between percentiles for FHT:
 - {ht_{5%-2%}, ht_{10%-5%}, ..., ht_{95%-90%}}
- Moments for FHT and charge distributions:
 - $\{ht_{mean}, ht_{std}, ht_{skew}, ht_{kurtosis}\}$
 - $\bullet \ \{pe_{mean}, pe_{std}, pe_{skew}, pe_{kurtosis}\}$





CDFs and PDFs for FHT (left) and charge (right) distributions. $R \simeq 0$ m, $E_{\rm kin}$ varied. Dashes lines show mean values,

Models description: BDT

A Decision Tree (DT) takes a set of input features and splits input data recursively based on those features.

Boosted Decision Trees (BDT):

- Ensemble model
- DT as base algorithm
- DTs in BDT are trained sequentially
- Each subsequent DT is trained to correct errors of previous DTs in the ensemble

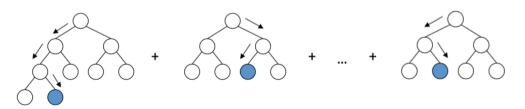


Figure: BDT demonstration. Source: https://arogozhnikov.github.io/

BDT: hyperparameters and benefits

Main tunable hyperparameters:

- **Max. depth**: The maximum depth of a tree (usually <12)
- ullet Learning rate: This determines the impact of each tree on the final outcome (usually pprox 0.1)
- **Number of trees**: How many trees in ensemble

Benefits:

- Fast for training and prediction
- Easier to tune
- Minimalistic

BDT: optimized set of features

BDT from XGBoost:

• Optimized **set of features** (sorted by *importance*):

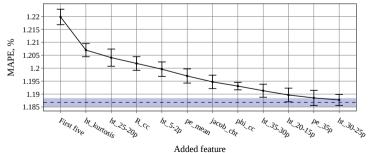
- AccumCharge
- $R_{\rm cht}$
- pe_{std}

- nPMTs
- $ht_{kurtosis}$
- $ht_{25\%-20\%}$
- R_{cc}

- ht_{5%-2%}
- pemean
- $J_{\rm cht}$
- ϕ_{cc}

- $ht_{35\%-30\%}$
- $ht_{20\%-15\%}$
- pe₃₅
 pe₃ѕ
 peъ
- $ht_{30\%-25\%}$
- Optimized hyperparameters (using Grid Search):
 - The maximum depth of the tree: 10
 - Number of trees in the ensemble: \sim 500
 - **1** Learning rate: 0.08

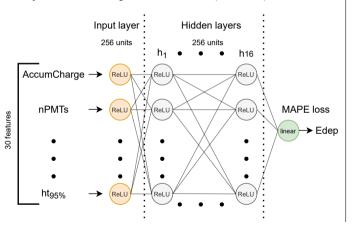
30-07-2022



10/14

Models description: FCDNN

Fully-connected deep neural network (**FCDNN**):



- The search for hyperparameters was performed using *BayesianOptimizer*
- Training with early stopping
- Validation dataset: 400k events
- *Selected features* provided the same performance as full set:
 - AccumCharge
- $\rho_{\rm cht}$

2 nPMTs
3 R_{cc}

o pe_{mean}

 $egin{array}{cc} egin{array}{cc} B_{
m cht} \end{array}$

pe_{std}

 ρ_{cc}

- pe_{skew}
 pe_{kurtosis}
- Percentiles of FHT distribution: {ht_{2%}, ht_{5%}, ht_{10%}, ht_{15%}, ..., ht_{90%}, ht_{95%}}

Metrics:

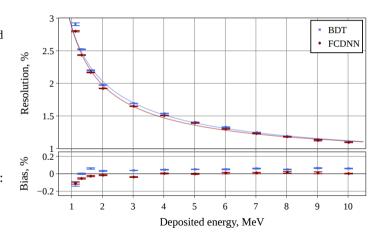
- Defined by a Gaussian fit of the $E_{\text{predicted}} E_{\text{dep}}$ distributions
- <u>Resolution</u>: σ/E_{dep} , where σ standard deviation of the fit
- Bias $\mu/E_{\rm dep}$, where μ mean of the fit

Parameterization:

$$\frac{\sigma}{E_{\rm dep}} = \sqrt{\left(\frac{a}{\sqrt{E_{\rm dep}}}\right)^2 + b^2 + \left(\frac{c}{E_{\rm dep}}\right)^2}$$

Models' pred. time and memory usage:

	BDT	FCDNN
Pred. time, sec/100k	3.5	17
Size, MB	50	12



Summary

- Energy reconstruction using the information collected by PMTs
- *Aggregated* features approach
- The following ML models are used: **BDT, FCDNN**
- As a result *achieved*:
 - High **quality** 3% @ 1 MeV, requared for physics goals of JUNO
 - ② Great **computation speed**, thanks to a small set of aggregated features (in $10^4 10^5$ times faster than traditional methods)

A. Gavrikov (HSE+JINR) MISP 2022 30-07-2022 13/14

References and more details

Publications:

- **A. Gavrikov**, et al. arXiv: 2206.09040 (2022)
- **A. Gavrikov**, et al. EPJ Web Conf. 251 (2021), 03014
- Z. Qian, et al. NIM-A 1010 (2021), 165527

A. Gavrikov (HSE+JINR) MISP 2022 30-07-2022 14/14