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Introduction to the JUNO experiment

@ Jiangmen Underground Neutrino Observatory:

o multipurpose experiment
53 km away from 8 reactor cores in China
data taking expected in ~2023
JUNO Collaboration:
o 77 institutions
@ 697 collaborators

@ The main goals of JUNO:

@ neutrino mass ordering (3¢ in 6 years)
@ precise measure of oscillation parameters
Sin2 912, Am%l, Amgl

© The Central Detector:

detection channel: 7. +p — e + n;
deposited energy converts to optical light
the largest liquid scintillator detector: 20 kt
77.9% photo-coverage: 18k 20, 26k 3”
photo-multiplier tubes (PMTs)

A. Gavrikov (HSE+JINR) MISP 2022 30-07-2022



Machine Learning (ML) in HEP

@ ML methods are used at all levels of data processing in many HEP experiments:

signal/background discrimination
event selection in the trigger
event simulation

anomaly detection

identification, etc.

o Why is ML useful for HEP?

Faster. More precisely, with proper training

Adequate for many purposes simultaneously: event simulation, analysis, reconstruction,
identification, etc.

GPU friendly by construction, which is important for big data processing

@ Machine-learning algorithms use statistics to find patterns in massive amounts of data

@ Our task is a supervised learning problem (regression)
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Problem statement

An example of a positron event with deposited energy ~6 MeV. | The grey sphere | — the primary vertex.
B Chargeat PMT [ First Hit Time (FHT) at PMT
We want to reconstruct:

Deposited energy Ejge, with resolution 3% @ 1 MeV
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@ Two datasets: for training and for testing o full detector and electronics simulation
@ generated by the Monte Carlo method o using the official JUNO software

Data description:
@ positron events
@ uniformly spread in the volume of the central detector
@ FEin € [0,10] MeV. Egep = Elin + 1.022 MeV

o Training dataset: o Testing dataset:
© 5 million events © subsets with discrete kinetic energies:
@ uniformly distributed in @ 0,01,03,06,1,2, .., 10 [MeV]

kinetic energy Eiin Q@ > = 1.4 million events: each subset

contains 100k
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Aggregated features

We use aggregated information from the whole array of PMTs as features for models:

@ AccumCharge — the accumulated charge on fired PMTs Q = F
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@ nPMTs — the total number of fired PMTs o

@ Coordinates of the center of charge:
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Aggregated features

@ Percentiles of FHT and charge distributions: @ Differences between percentiles for FHT:
o {htao, htsos, htioes, htisos, ..., htooss, htgses } o {htso—29%, hti0%—5%, .-, Ntoses—g0% }

© {pexs, pesw, Pe1os, Peists, ---, Pesoss, Peosss } @ Moments for FHT and charge distributions:

° {htmeam htsld: htskew> htkurlosis}
4 {Pemeany P€std, PEskew, pekunosis}
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CDFs and PDFs for FHT (left) and charge (right) distributions. R ~ 0 m, Fj, varied. Dashes lines show mean values.
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Models description: BDT

A Decision Tree (DT) takes a set of input features and splits input data recursively based on those features.
Boosted Decision Trees (BDT):

@ Ensemble model

@ DT as base algorithm

@ DTs in BDT are trained sequentially

@ Each subsequent DT is trained to correct errors of previous DTs in the ensemble

- = “
" + " + 4+ N

Figure: BDT demonstration. Source: https://arogozhnikov.github.io/
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BDT: hyperparameters and benefits

Main tunable hyperparameters:
@ Max. depth: The maximum depth of a tree (usually <12)
@ Learning rate: This determines the impact of each tree on the final outcome (usually ~ 0.1)

@ Number of trees: How many trees in ensemble

Benefits:
@ Fast for training and prediction
@ FEasier to tune

@ Minimalistic
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BDT: optimized set of features

BDT from XGBoost:

@ Optimized set of features (sorted by importance):

MAPE, %

@ AccumCharge @ nPMTs © htso,_oo
9 Rcht 0 htkunosis @ P€mean
Q 2 @ htyse, 0% @ Jun
0 Péstd e Rcc @ ¢CC
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Added feature

@ htsse—30%
@ htygo—15%
@ pesso

@ htspo,—_25%

@ Optimized hyperparameters
(using Grid Search):

@ The maximum depth of
the tree: 10

@ Number of trees in the
ensemble: ~500

© Learning rate: 0.08
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Models description: FCDNN

Fully-connected deep neural network (FCDNN):
. . @ The search for hyperparameters was
Input layer : Hidden layers - performed using BayesianOptimizer
256 units - 256 units . i ; ;
: h1 e o hie @ Training with early stopping
— : @ Validation dataset: 400k events
AccumCharge —> @ . .
9 : @ Selected features provided the same
performance as full set:
" nPMTs  —> @‘ MAPE loss
g ‘ @ AccumCharge Q oo
3 Edep @ nPMTs @ penean
L]
8 Q R Q pew
¢ o Rcht e P€skew
® J : e Pcc @ PE€kurtosis
htose - @ : . o : @ Percentiles of FHT distribution:
: {htao, htsoe, htioss, htise, ..., htaos, htose }
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Metrics:

@ Defined by a Gaussian fit of the

Epredicted — Eep distributions 3
- -
@ Resolution: o/ E4ep, where o — standard i ) ECDENN
deviation of the fit o 25 1
=)
@ Bias pu/ Edep, where p — mean of the fit g ‘x\
£ 2 3
Parameterization: 2 \..
2 -
2 =
70- = a +b2+< ¢ > -\-—\HE ———
Edep A/ Edep Edep o 0.%
o
. -~ = e —— —— —— —— = == ——
Models’ pred. time and memory usage: & (] == T
R 02 F
BDT | FCDNN 1 2 3 4 5 6 7 8 9 10

Pred. time, sec/100k | 3.5 17
Size, MB 50 12

Deposited energy, MeV
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e Energy reconstruction using the information collected by PMTs
e Aggregated features approach

e The following ML models are used: BDT, FCDNN

e As aresult achieved:
© High quality 3% @ 1 MeV, requared for physics goals of JUNO

@ Great computation speed, thanks to a small set of aggregated features (in 10* — 10°
times faster than traditional methods)
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