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Classical and quantum chaos

® Classical chaos is closely related to the exponential sensitivity to initial
conditions (“butterfly effect”):

[z(t)|] ~ e [[62(0)],

where k. is called the classical Lyapunov exponent

® Quantum chaos and quantum Lyapunov exponent are more subtle because
there are no trajectories in quantum world

® Due to this reason, we need to find alternative signatures of chaos that are
well defined in the quantum case and distinct chaotic and integrable systems
in the semiclassical limit
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OTOCs

® One of such signatures, which has recently grown popular, is the exponential
growth of the out-of-time-ordered correlation functions (OTOCs):
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® |n the semiclassical limit, OTOCs capture the “butterfly effect™

C) ~ 7 S a0} =

4,j=1

t) '2 o2 ()] o B2t
194;(0) [2(0)|1?

® OTOCs allow us to define the quantum Lyapunov exponent:
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Kq & o log hQNQZ as m_q<<t<<m_qbgﬁ

® Note that eventually OTOCs are saturated, which reflects the breakdown of
the semsiclassical description (cf. the Ehrenfest time)
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Correspondence

® Unfortunately, the correspondence between the classical and quantum chaos
remains relatively poorely studied

® Besides, there are few examples where OTOCs can be calculated analytically

® Therefore, it is useful to consider a tractable model, where this
correspondence can be checked directly

® As an example of such a model, we propose the vector mechanics with a
large number of degrees of freedom N and quartic interaction:
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® We also assume the system to be thermal with an inverse temperature 3

® We will show that the symmetric model (aw = 0) is both classically and
quantum integrable, whereas the nonsymmetric model (a # 0) is chaotic
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Augmented Schwinger-Keldysh technique

To calculate the regularized OTOC, we use the augmented Schwinger-Keldysh

technique on the twofold contour (in our notation C(t) = 8t16t2012;34]§:23):

Ci2;34 = — (Put (t1)Pu—(t3) a+ (t2)Pa— (ta)) — (Pu—(t1) Put(t3)Pa— (t2)Pa+(t4))
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Augmented Schwinger-Keldysh technique

® The vertices are the same as in the standard (onefold) technique

® In addition to the standard R/A/K propagators, the augmented technique
contains the W propagator that connects different folds:
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No chaos in the symmetric model

® The leading corrections to the averaged OTOC in the O(N)-symmetric
model are described by the so-called “ladder’ diagrams

 Substituting the exponential ansatz C1a,34 ~ €%, t = % (t1 +ta —t3 — t4),
into the Bethe-Salpeter equation, we get the equation on «:
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where w = eﬁm/z/ (eﬁm — 1), m is the renormalized mass, and p is the
parameter of the resummed vertices (shaded bubbles on the picture)

e All solutions to this equation are purely inaginary; hence, there is
no quantum chaos in the O(N)-symmetric model
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Chaos in the full nonsymmetric model

® Keeping in mind the leading contributions from nonsymmetric vertices and
using the same ansatz for Cj2.34, we get the equation on & in the full model:
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® The solutions to this equation has a positive real part

® The maximal quantum Lyapunov exponent is as follows:

8v/6 wA m
fa =75 AN

® The exponent scales as x4 ~ +/A/3 in the high-temperature limit and is
exponentially suppressed in the low-temperature limit:
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Comparison to classical chaos

® The O(N)-symmetric model is clearly classically integrable, i.e., its
maximal Lyapunov exponent is zero

® The numerical calculations of the maximal Lyapunov exponent in the
nonsymmetric model yield the following high-temperature behavior:

0.284+0.02
_ 1 A

where we assume o = 1 and use the relation 8 ~ N/E

® Details of this calculations are discussed in Nikita Kolganov’s poster,
which | kindly ask you to examine

® Thus, in both models, classical and quantum Lyapunov exponents
approximately coincide with each other
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Qualitative analysis

® |n fact, the high-temperature behavior of classical and quantum Lyapunov
exponents can be deduced from dimensional grounds

® In the limit fm < 1 and fm < A\/m3, the quadratic part of the potential
energy is negligible, so the Hamiltonian acquires the following form (« = 1):

N
: 1 A
thgh ~ — 2 A 212
Z 271-1 + 4N Z ¢Z ¢]
i=1 i#]
® This "pruned” Hamiltonian is invariant under the scale transformations:
t=y7, ¢k, H—A'H

® Since the Lyapunov exponent has the dimension of inverse time, this
invariance implies the high-temperature dependence x ~ vE ~ {/\/B
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Analogy to billiards

® Furthermore, we can compare the constant potential energy surface
(CPE surface) with a wall of a Sinai billiard

® |t is known that Sinai billiards exhibit a chaotic behavior in the presence of
concave walls

® In the nonsymmetric model, the CPE surface becomes concave at energies
E > E.n = 3Nm*/2), which agrees with the emergence of chaos

Figure: [Left] CPE curve for N =2 and E < Econ (blue line), E = Econ (orange line),
E > Econ (green line). [Right] CPE surface for N = 3 and E > Econ.
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Conclusion

® We suggest a tractable chaotic model — the nonlinear vector mechanics with
a quartic interaction and thermal initial state

In the O(N)-symmetric case, both classical and quantum Lyapunov
exponents are zero

In the nonsymmetric case, both exponents emerge in the high-temperature
limit, approximately coincide, and scale as kg ~ K¢ ~ %Q/%

This calculation supports the use of OTOCs as a diagnostic of quantum chaos
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