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Embedding theory and Regge-Teitelboim equations

Embedding theory: approach to describe gravity.

o embedding function y?(x*) : M — RN+N-
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Embedding theory and Regge-Teitelboim equations

Embedding theory: approach to describe gravity.

o embedding function y?(x*) : M — RN+N-
o u=20,1,2,3 a=0,1,...,N-1

o ambient space metric 7, is flat

o

surface metric g, is induced: g, = (9,.y?) (8uy®)na»

Einstein-Hilbert action: S = [ d*x/—g(£& + L)
Independent variable: g, (OTO) — y?(x) (embedding theory)

Equations of motion (Regge-Teitelboim equations): D, ((G’“’ — %T‘“’)Bl,y"”) =0
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D, ((G“V - %T’“’)&,,y") -0

Regge-Teitelboim equations
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Embedding matter

D,L<(G’“’ _ %T“V)&,y"”) —0

Regge-Teitelboim equations

We introduce the notation »7#" = (G"¥ — »TH""), then

o Einstein equations with the contribution of some additional (fictitious) matter with the
energy-momentum tensor 7HV::
G* — (TH + 7#) =0;

o The embedding matter equation of motion:

D, (747 8,y?) = .
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Reformulating the embedding theory as GR with embedding matter at the
level of action

The equivalence between embedding theory and GR with fictitious embedding matter at the level of
equations of motion:

GHY — 5(TH + 7H") =0
Dy (" 0,y*) =0

Du((6" = %T™)d,y%) = 0|
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Reformulating the embedding theory as GR with embedding matter at the
level of action

The equivalence between embedding theory and GR with fictitious embedding matter at the level of
equations of motion:

GHY — 3¢(TH 4+ 7)) =0
D, (T“”@Vya) =0

Du((6" = %T™)d,y%) = 0|

The same equivalence at the level of action:

a1 S=5 45, + 5
S[y]zi/ddrx\/_gR@ Gadd _ 2

2

3/17



Reformulating the embedding theory as GR with embedding matter at the

level of action

The equivalence between embedding theory and GR with fictitious embedding matter at the level of

equations of motion:

D ((6" = %T)9,y%) =0

The same equivalence at the level of action:

Sl =

1

2

/ d*xv/—gR

@

GHY — 3¢(TH 4+ 7)) =0
D, (T“”@Vya) =0

S=SEH 4§, + Gadd
Gadd _ 7

1
Gadd _ §/d4x\/jg(guy - (aﬂy"’)(auya))T””
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Arnowitt-Deser-Mizner variables (ADM):

Bik = 8k, Ny = gox, N =
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Change of variables

Arnowitt-Deser-Mizner variables (ADM):
1

Bik = &ik, Ny = gok, N = Nart

The ADM action:

ADM _ 4 ik,Im 1 :
s 7/d x<2NK,kL K,m—i—EN\/BR).

Notation:
1 3 3
Kixk = SN (DiNk + DyN; — 5oﬁ/k>;
Likidm _ VB (ﬁi!ﬁkm 4 gimghl _ 26ikﬂlm);
8x
2=

Ligjm = NG (5;/5km + BimBr — ﬁikﬁ/m)
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Change of variables IS

From M to ¢, ¢k, ¢¥:

6= —%NQ\/ETOO;

o = —N/Br0 — %(Nk + B*ePer);

¢V = —%Nx/ﬁf"f + ﬂ”‘?m%eieﬁqeoaeow
Notation:

eZ = 8'uya;

Bix = € €a-
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Change of variables

From 7#¥ to ¢, (;Sk, gbU:
6= —%N2\/§T°°;
ok = —N\/Br 0 — %(Nk + Bkebey);
¢ = —%N\/BTU + 5"kﬁjm%efes1€0a60b-
Notation:

e, = oy

Bix = € €a-

N

gadd _ /d4x <(5ij — Bi)d7 + (efea0 — N;)o' + (N + leaoﬁibebo> ¢> )

> —ii
Here MM, § = 07 — elepi5.
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Momenta corresponding to the ADM variables Sk, Nk, N:

wk = 05 ppikimg, mn=0, wn=0
0Bk
d=my~0 ok =78 ~0
Momenta corresponding to ¢, ¢, ¢™:
V= ~0 Vi =l ~0 Wy = 74 ~
Momenta corresponding to y?:
Pa = (;2/53 o (,)kea;< + %Ft?yb

o a kD
Q; = paef — "By =0

6/17



Momenta corresponding to the ADM variables 8j, N, N:
ik _ 4S

= — = 2LkImy, 7 =0, 7y = 0.
6B : . "
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Momenta, primary constraints

Momenta corresponding to the ADM variables 8j, Ny, N:

wk = 02 ppikimg, ko,
0Bk

d=my=0 ¢k:7r,’§,

~
~

0
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Momenta, primary constraints

Momenta corresponding to the ADM variables 8j, Ny, N:

aik = 95 ppikmpg, =0, wn=0
0 Bik
Momenta corresponding to ¢, ¢/, ¢'*:
W;:ﬂ?%O \U,'k:ﬂ'i%0
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Momenta, primary constraints

Momenta corresponding to the ADM variables 8j, Ny, N:

mik = ﬁ = —2LkImy, 7 =0, 7n = 0.
OBk

Momenta corresponding to ¢, ¢/, ¢'*:

V= ~0 V=m0

Momenta corresponding to y?:

Q
o

6/17



Momenta, primary constraints

Momenta corresponding to the ADM variables 8j, Ny, N:

'k = 95 —pLkdm e, 7 =0, an = 0.
0 Bik
Momenta corresponding to ¢, ¢/, ¢'*:
W;:w?%O \U,'k:ﬂ'i%0

Momenta corresponding to y?:

0S

2
_ _ ik
Pa= 555 = Vet Ty

N

Qj = p.ef — "B~ 0

3
‘bmgyb.
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H = 7By + pay® — L + primary constraints with Lagrange multipliers

Hamiltonian density H can be conveniently broken down into two terms

Y — ,HADM + /Hadd-

where 1 1
HAM = N L '™ + 7 (D,-/\/k + DkN,-> — S NV/BR+ 0 + A, 0%,
V4
odd = N b (B — B+ paetB Ne — 6N 4+ W £ XU 4 I 4 €10,
o 4()pa L Pb ij ij Pa€; | k X X i X iy S AL
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Hamiltonian

H = 7By + pay® — L + primary constraints with Lagrange multipliers
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Hamiltonian

H = 7By + pay® — L + primary constraints with Lagrange multipliers

Hamiltonian density H can be conveniently broken down into two terms
ADM dd
H=H + H3,

where
1 o /3 3 1 3
HAM = ZNT L™ 4+ 7% ( Dyl + D) = 5= N/BR + AP + A,
4
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Hamiltonian

H = 7By + pay® — L + primary constraints with Lagrange multipliers

Hamiltonian density H can be conveniently broken down into two terms
ADM dd
H=H + H3,
where

L . /3 3 1 3
HAPM — %Nw'kL,-k,,,,,yr"" + (D,-Nk + DkN,-) - Z—N\/BR +AD A PF,
»

N = i Z ik i i i
4qadd _ @panibpb + ¢ (B — By) + pa€i B Nk — N + xW + x'V; + x! WV +£'Q;.
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All the primary constraints T,, a = 1... M must be preserved: T, = {H, T,} =~ 0.

Conditions for the conservation of primary
constraints give the first generation of

secondary constraints: Notation:
1 . — 1 3
¢ HADI\/I - 77/1( L/'kA/m/T/m - — \//7/?;
Z=¢+ 2pL =0 2 23
2 = 2/ADM 23 E) o/
,HO o /HOADM Fipl A O; i o rm\/ 3 \/7,
/H /HADM + e;'p? I~ OY //’ 3 b
Y = B -~ 0. pL ="\ —pal1Ppb;
= RS
J ¢ =+l
Next generation of secondary constraints: a _ Iil"b ,
P Pb;
- 3 a
Ak = Lig jmm"™ — 2¢n, b3, =~ 0; n? =P ;
p
3 3

km a . a
T’J*TU+ @ Tukmmo' 7kaka)/-
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Secondary constraints

All the primary constraints T., &= 1... M must be preserved: T, = {H, T,} = 0.

Conditions for the conservation of primary
constraints give the first generation of

secondary constraints: Notation:1 .
_ ¢ Ho™M = Eﬂikzik,/mﬂlm - *\/BR:
::¢+§PL%0; 3ﬂ-Jm
ADM
Ho = ’HS“DM +(pL =0; H; _Qﬁlmf
Hie = HOM + efpa ~ 0; \/7317
Y, = Bi — B; ~0. pr =\ —=paNTps;
Lo C=+1.
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Secondary constraints

All the primary constraints T., &= 1... M must be preserved: T, = {H, T,} = 0.

Conditions for the conservation of primary
constraints give the first generation of

secondary constraints: Notation:1 .
=_ ¢ 0 Ho™M = Eﬂikzik,/mﬂlm - *\/BR:
==0+spL=0;
2 3 7.‘.Jm
Ho = ’HS“DM +(pL =0; HADM _Qﬁlmf

Hy = HPM + efp, ~ 0;
= pL =Y —Pan‘lbpb;

i = By — By ~ 0.

¢ ==+l
Next generation of secondary constraints: 3
& Y pl = NTpy;

Pl

A; ik — [ﬁk hn7T 2<:na i ~ 0; n® = —

pPL
Ti=Ti+0" T ~0 b2, = D:Dyy’
i =T+ T m~0. % =DiDyy’.
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Hamiltonian density as a linear combination of the constraints

It is convenient to write the Hamiltonian density as a linear combination of the constraints already
introduced:

H = NHo + NHy + (67 + 85 B e2psNim) + A® + Ak + W + /W, + x4 £,
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First and second class constraints

First class constraints

First class constraints are constraints whose Poisson brackets with all other constraints are just

constraints linear combinations:
{Ta, T3} = C;’IBTA, ~ 0.

Quantizing the theory with first class constraints T,,, a =1... M:
[Ta, Tg) = CJB Ty

T ) = 0.

This does not work with second class constraints!

10/17



o First class constraints: Hy.

o Others are second class.
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o First class constraints: Hy.

o Others are second class.
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o First class constraints: Hy.

o Others are second class.

We have to solve second class constraints before quantization.
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After solving the trivial constraints:

list of the constraints:

variables:
Ho = He"M + (pL ~ 0

Hy = HPM + efp, ~ 0 .
Z,J:ﬂufﬁ,l%o

3
T [/ ~
Nik = Lig,imm™ — 2¢n,bj =~ 0
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After solving the trivial constraints:

list of the constraints:

variables:
Ho = He"M + (pL ~ 0

Hy = HPM + efp, ~ 0 .
Tj=P0;—B;~0 .
’ Bik '

3
T [/ ~
Nik = Lig,imm™ — 2¢n,bj =~ 0

Hamiltonian: B _ ) o
H = NHo + N*Hy + (67 + B*B"" e palNim).

Two options:

o Eliminate the embedding function y? and its conjugate momentum p,. Problem: equation
0iy?Okya = Bik-

o Eliminate 3; and /.
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After solving the trivial constraints:

list of the constraints:

ariables:
Ho = HePM +(py ~0 van
Hi = HePM + efp, =~ 0 s
Z,’j = 6’1 — BU ~0

3
T [/ ~
Nik = Lig,imm™ — 2¢n,bj =~ 0

Hamiltonian: B _ ) o
H = NHo + N*Hy + (67 + B*B"" e palNim).

Two options:

o Eliminate the embedding function y? and its conjugate momentum p,. Problem: equation
0iy?Okya = Bik-

o Eliminate 8; and 79. +— we choose this way
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Solution:

Bi = By i = 2¢n, b L.
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Solving the remaining second class constraints

Solution:
Bij = Bj; 7l = 2¢n, b3 LI

First order action:

s — / dt / d3x(7r"k[-},-k + pay? — NHo — Nka).
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Solving the remaining second class constraints

Solution:
Bij = ﬁ,-j; i = 2§nab;’kL”‘7’/.

First order action:
s = / dt / d3x (ﬂikB;k + pay® — NHo — Nka).

Then

1
£ — 7§<Babnb + 5(nB%n, + Bg)na)y‘a — NHo — N*H,,

3 3
ab __ a b fik,Im
here B3 = 4bj b)) L .

13/17



£ = —g<Ba,,nb + %(nCBCbnb n Bg)na) v — NHo — N¥H,

14 /17



Back to the

Hamiltonian

1
£ = —((Babnb + 5(nB%n, + Bg)na)y'a — NHo — N*Hy,

Primary constraints:

<T>,- =mef ~0;

<1A)4 = n()/"",7ra)2 +1~0;

ﬁ)a _ na(yaaﬂa) pj_ ~
v —n? pL ’

772 0;

™™N 0;

7r,/§, 0.
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Back to the Hamiltonian

£ = _g(B ot + 2(nCBCbnb + B )na)y — NHo — N*Hy,

Primary constraints:

$,’ = 7'('5,6,-a ~ 0,

®4 = n(y?, m,)2 +1~0;

\TJQ _ n?(y?,ma) ﬁ
V—n? pPL

mp = 0;

™™N 0;

7r,/§, 0.

Secondary constraints:

Ho = HADM(y?
H, = HADM(
N =~ 0;
N, ~ 0.

Ta) +(pL = 0;

)+ekpa ~0;
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Back to the Hamiltonian

£ = _g(B ot + 2(nCBCbnb + B )na)y — NHo — N*Hy,

Primary constraints:

$,’ = 7'('5,6,-a ~ 0,

El\)4- =n yaaﬂ—a)2+1 ~0;

\Ua — na(.ya?ﬂ-a) o pj_ ~
V—n? pPL

mp = 0;

Ty =~ 0;

Tk ~ 0

Hamiltonian after solving the constraints:

Secondary constraints:

Ho = HADM(y?
H, = HADM(
N =~ 0;
N, ~ 0.

H=X'®; + {Pa.

Ta) +(pL = 0;

)+ekpa ~0;
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Conclusions

For the complete embedding theory formulated in the form of GR with an additional contribution of the
so-called embedding matter, the canonical description of the theory is constructed.
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well as variables describing embedding matter remain.
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Conclusions

For the complete embedding theory formulated in the form of GR with an additional contribution of the
so-called embedding matter, the canonical description of the theory is constructed.

o All the constraints are found.

Some of the constraints are second class.

©

(+]

Second class constraints are solved by eliminating the variables 3, 7.

(+]

The constructed canonical system passes into the canonical formulation of the complete embedding
theory.

Next steps:
o Solving the constraints by excluding canonical variables in such a way that the variables By, 7, as

well as variables describing embedding matter remain.
o Studying the Einstein limit.
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