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Embedding theory and Regge-Teitelboim equations

Embedding theory: approach to describe gravity.

embedding function y a(xµ) :M→ RN+,N−

µ = 0, 1, 2, 3 a = 0, 1, . . . ,N − 1
ambient space metric ηab is flat
surface metric gµν is induced: gµν =

(
∂µy

a
)(
∂νy

b
)
ηab

Einstein-Hilbert action: S =
∫
d4x
√
−g( R

2κ + Lm)

Independent variable: gµν (ОТО) → y a(x) (embedding theory)

Equations of motion (Regge-Teitelboim equations): Dµ

(
(Gµν − κTµν)∂νy

a
)
= 0
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Embedding matter

Dµ

(
(Gµν − κTµν)∂νy

a
)
= 0

Regge-Teitelboim equations

We introduce the notation κτµν = (Gµν − κTµν), then

Einstein equations with the contribution of some additional (fictitious) matter with the
energy-momentum tensor τµν ::

Gµν − κ(Tµν + τµν) = 0;

The embedding matter equation of motion:

Dµ

(
τµν∂νy

a
)
= 0.
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Reformulating the embedding theory as GR with embedding matter at the
level of action

The equivalence between embedding theory and GR with fictitious embedding matter at the level of
equations of motion:

Dµ

(
(Gµν − κTµν)∂νy

a
)
= 0 ⇔ Gµν − κ(Tµν + τµν) = 0

Dµ

(
τµν∂νy

a
)
= 0

The same equivalence at the level of action:

S [y a] =
1

2κ

∫
d4x
√
−gR ⇔ S = SEH + Sm + Sadd

Sadd = ?

Sadd =
1
2

∫
d4x
√
−g

(
gµν − (∂µy

a)(∂νya)
)
τµν
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Change of variables

Arnowitt-Deser-Mizner variables (ADM):

βik = gik , Nk = g0k , N =
1√
−g00

.

The ADM action:
SADM =

∫
d4x

(
2NKikL

ik,lmKlm +
1

2κ
N
√
β

3

R
)
.

Notation:

Kik =
1

2N

( 3

D iNk +
3

DkNi − ∂0βik

)
;

Lik,lm =

√
β

8κ

(
βilβkm + βimβkl − 2βikβlm

)
;

Lik,lm =
2κ√
β

(
βilβkm + βimβkl − βikβlm

)
.
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Change of variables
From τµν to ϕ, ϕk , ϕij :

ϕ = −1
2
N2

√
βτ00;

ϕk = −N
√

βτ k0 − ϕ

N
(Nk + βikebi eb0);

ϕij = −1
2
N
√
βτ ij + βikβ

jm ϕ

N
eake

b
me0ae0b.

Notation:

eaµ = ∂µy
a;

βik = eai eak .

Sadd =

∫
d4x

(
(βij − βij)ϕ

ij + (eai ea0 − Ni )ϕ
i +

(
N +

1
N
ea0

3

Πab
⊥ eb0

)
ϕ

)
,

Here
3

Π⊥
a
b = δab − eai ebjβ

ij
.
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Momenta, primary constraints

Momenta corresponding to the ADM variables βik , Nk , N:

πik =
δS

δβ̇ik

= −2Lik,lmKlm, πk
N = 0, πN = 0.

Φ = πN ≈ 0 Φk = πk
N ≈ 0

Momenta corresponding to ϕ, ϕi , ϕik :

Ψ = πϕ ≈ 0 Ψi = πϕ
i ≈ 0 Ψik = πϕ

ik ≈ 0

Momenta corresponding to y a:

pa =
δS

δẏ a
= ϕkeak +

2ϕ
N

3

Π⊥
b
a ẏb.

Ωj = pae
a
j − ϕkβkj ≈ 0
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Hamiltonian

H = πik β̇ik + paẏ
a − L+ primary constraints with Lagrange multipliers

Hamiltonian density H can be conveniently broken down into two terms

H = HADM +Hadd,

where
HADM =

1
2
NπikLik,lmπ

lm + πik
( 3

D iNk +
3

DkNi

)
− 1

2κ
N
√
β

3

R + λΦ+ λkΦ
k ,

Hadd =
N

4ϕ
pa

3

Πab
⊥ pb + ϕij(βij − βij) + pae

a
i β

ik
Nk − ϕN + χΨ+ χiΨi + χijΨij + ξiΩi .
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Secondary constraints

All the primary constraints Tα, α = 1 . . .M must be preserved: Ṫα = {H,Tα} ≈ 0.

Conditions for the conservation of primary
constraints give the first generation of
secondary constraints:

Ξ = ϕ+
ζ

2
p⊥ ≈ 0;

H0 = HADM
0 + ζp⊥ ≈ 0;

Hk = HADM
k + eakpa ≈ 0;

Σij = βij − βij ≈ 0.

Next generation of secondary constraints:

Λik = Lik,lmπ
lm − 2ζna

3

baik ≈ 0;

Υij = Υij + ϕkmΥ
(1)
ij,km ≈ 0.

Notation:

HADM
0 =

1
2
πikLik,lmπ

lm − 1
2κ

√
β

3

R;

HADM
i = −2βim

√
β

3

D j
πjm

√
β
;

p⊥ =

√
−pa

3

Πab
⊥ pb;

ζ = ±1.

pa⊥ =
3

Πab
⊥ pb;

na =
pa⊥
p⊥

;

3

baik =
3

D i

3

Dky
a.

8 / 17



Secondary constraints

All the primary constraints Tα, α = 1 . . .M must be preserved: Ṫα = {H,Tα} ≈ 0.
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Hamiltonian density as a linear combination of the constraints

It is convenient to write the Hamiltonian density as a linear combination of the constraints already
introduced:

H = NH0 + NkHk +Σij

(
ϕij + βikβ

jm
eakpaNm

)
+ λΦ+ λkΦ

k + χΨ+ χiΨi + χijΨij + ξiΩi .

9 / 17



First and second class constraints

First class constraints
First class constraints are constraints whose Poisson brackets with all other constraints are just
constraints linear combinations:

{Tα,Tβ} = Cγ
αβTγ ≈ 0.

Quantizing the theory with first class constraints Tα, α = 1 . . .M:

[T̂α, T̂β] = Ĉγ
αβT̂γ ;

T̂α |φ⟩ = 0.

This does not work with second class constraints!
10 / 17



Constraints classification

First class constraints: Hk .
Others are second class.

We have to solve second class constraints before quantization.
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After solving the trivial constraints:

list of the constraints:

H0 = HADM
0 + ζp⊥ ≈ 0

Hk = HADM
k + eakpa ≈ 0

Σij = βij − βij ≈ 0

Λik = Lik,lmπ
lm − 2ζna

3

baik ≈ 0

variables:

y a

βik

pa

πik

Hamiltonian:
H = ÑH0 + ÑkHk +Σij

(
ϕij + βikβ

jm
eakpaNm

)
.

Two options:
Eliminate the embedding function y a and its conjugate momentum pa.

Problem: equation
∂iy

a∂kya = βik .

Eliminate βij and πij .

←− we choose this way
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Solving the remaining second class constraints

Solution:
βij = βij ; πij = 2ζnabalkL

lk,ij .

First order action:

S (1) =

∫
dt

∫
d3x

(
πik β̇ik + paẏ

a − NH0 − NkHk

)
.

Then

L(1) = −ζ
(
Babn

b +
1
2
(ncB

cbnb + Bc
c )na

)
ẏ a − NH0 − NkHk ,

here Bab = 4
3

baik
3

bblmL
ik,lm.
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a − NH0 − NkHk

)
.

Then

L(1) = −ζ
(
Babn

b +
1
2
(ncB

cbnb + Bc
c )na

)
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Back to the Hamiltonian

L(1) = −ζ
(
Babn

b +
1
2
(ncB

cbnb + Bc
c )na

)
ẏ a − NH0 − NkHk

Primary constraints:

Φ̂i = πae
a
i ≈ 0;

Φ̂4 = n(y a, πa)
2 + 1 ≈ 0;

Ψ̂a =
na(y a, πa)√
−n2

− pa⊥
p⊥
≈ 0;

πa
p ≈ 0;

πN ≈ 0;
πk
N ≈ 0.

Secondary constraints:

H0 = HADM
0 (y a, πa) + ζp⊥ ≈ 0;

Hk = HADM
k (y a, πa) + eakpa ≈ 0;

N ≈ 0;
Nk ≈ 0.

Hamiltonian after solving the constraints:

H = χ̂i Φ̂i + χ̂Φ̂4.
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Conclusions

For the complete embedding theory formulated in the form of GR with an additional contribution of the
so-called embedding matter, the canonical description of the theory is constructed.

All the constraints are found.
Some of the constraints are second class.
Second class constraints are solved by eliminating the variables βik , πik .
The constructed canonical system passes into the canonical formulation of the complete embedding
theory.

Next steps:

Solving the constraints by excluding canonical variables in such a way that the variables βik , πik , as
well as variables describing embedding matter remain.
Studying the Einstein limit.
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