DEVELOPMENT OF ALGORITHM FOR PREDICTION OF PARAMETERS OF SECONDARIES IN HADRONIC SHOWERS IN HIGHLY GRANULAR CALORIMETERS USING A NEURAL NETWORK

Marina Chadeeva¹ and Sergey Korpachev^{1, 2}

¹P.N. Lebedev Physical Institute of the RAS

²Moscow Institute of Physics and Technology

Detector ILD for future lepton collider experiments

- Proposed collider projects: ILC, CLIC, FCC, CEPC
- Aimed at PFA reconstruction: precision tracking, highly granular calorimeters and muon system
- Scintillator-steel hadron calorimeter with about 10 million channels (tiles with SiPM readout)
- iLCSoft software package for simulation and reconstruction

CALICE collaboration develops highly granular calorimeters for future experiments

- test of different technologies
- validation of simulations
- development of calibration and reconstruction techniques

Reconstruction and event selection

- Official reconstruction chain, 0.5 MIP cut for hits, official start finder algorithm
- For analysis: only events with found start at 3–6 AHCAL layers

Features used in the analysis

Highly granular calorimeters provide unique information (calorimetric observables) about hadronic shower development

- Number of isolated hits in a shower
- Number of track hits within a shower
- Mean shower hit energy
- Shower radius
- Longitudinal shower centre of gravity

Additional features (24 "ring" observables)

- Number of isolated hits in a ring
- Energy sum in a ring

Prediction of number of neutrons in 40 GeV pion-induced shower

Motivation and goal

- Motivation: detailed validation of simulations
- Goal: prediction of parameters of secondaries in hadronic showers using calorimetric observables

Monte Carlo samples

- CALICE AHCAL technological prototype geometry and layout
- centrally generated samples of negative pions, 10–80 GeV, 500 kevt / sample
- Geant4 v10.3, physics lists: FTFP_BERT_HP and QGSP_BERT_HP
- official digitisation

Neural network structure and hyperparameters

- 29 input features and 1 target (true from mc collection): number of neutrons produced in hadron-nucleus interactions and sum of neutral pion energies
- Number of neurons: 29 / 128 / 64 / 32 / 1
- Activation function: ReLU for hidden layers; linear $\big(f(y)=y\big)$ for output layer
- Learning rate (Ir): from 0.1 to 0.0000001
- Batch size (bs): from 1 to 256 \Rightarrow Events come in batches iteratively
- Number of epochs: 10-200
- Loss function: weighted MSE (or divided by σ^2 or Huber Loss) $\operatorname{Loss} = \frac{1}{N} \cdot \sum_{i=1}^{N} \operatorname{W}_i \cdot (\operatorname{Xpred}_i \operatorname{Xtrue}_i)^2, 1 \leq i \leq N, \operatorname{Xpred} \operatorname{prediction}, \operatorname{Xtrue} \operatorname{from} \operatorname{MC} \operatorname{collection} \operatorname{and} \operatorname{W}_i \operatorname{weights} \operatorname{from} \operatorname{pdf} \operatorname{of} \operatorname{target} \operatorname{variable}$

Prediction of energy of neutral pions in 40 GeV pion-induced shower

