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1 Intera
tion Lagrangian and weak 
urrents.

In the Standard Model (SM), the 
harged and neutral 
urrent neutrino intera
tions with

leptons are des
ribed by the following parts of the full Lagrangian:

LCC

I (x) = − g

2
√

2
jCCα (x)Wα(x) + H.
. and LNC

I (x) = − g

2 cos θ

W

jNCα (x)Zα(x).

Here g is the SU(2) (ele
tro-weak) gauge 
oupling 
onstant

g2 = 4
√

2m2
WGF , g sin θ

W

= |e|,

and θ

W

is the weak mixing (Weinberg) angle, (sin2 θ

W

(MZ) = 0.23120).

The leptoni
 
harged 
urrent and neutrino neutral 
urrent are given by the expressions:

jCCα (x) = 2
∑

ℓ=e,µ,τ,...

νℓ,L(x)γαℓL(x) and jNCα (x) =
∑

ℓ=e,µ,τ,...

νℓ,L(x)γανℓ,L(x).

Phenomenologi
ally, the 
harged and neutral 
urrents may in
lude (yet unknown) heavy

neutrinos and 
orresponding heavy 
harged leptons. The left- and right-handed fermion �elds

are de�ned as usually:





νℓ,L(x) = PLνℓ(x), ℓL(x) = PLℓ(x), PL ≡ 1

2
(1 − γ5),

νℓ,R(x) = PRνℓ(x), ℓL(x) = PRℓ(x), PR ≡ 1

2
(1 + γ5).
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Physi
al meaning of 
hiral proje
tions for a massive Dira
 fermion.

(p̂−m)ψ = 0 =⇒
(
p0 −m −pσ

pσ −p0 −m

)(
φ

χ

)
= 0 =⇒

{
(pσ)χ = (p0 −m)φ,

(pσ)φ = (p0 +m)χ.

⇓

ψL = PLψ =
1

2

(
φ− χ
χ− φ

)
=

(
φ−

−φ−

)

ψR = PRψ =
1

2

(
φ+ χ

φ+ χ

)
=

(
φ+

φ+

) where φ± =
1

2

(
1± pσ

p0 +m

)
φ.

Let p0 ≫ m and thus 1− |v| ≪ 1, where v = p/p0. Then, dire
ting v along the z axis we obtain

φ− ≃ 1− σ3

2
φ =

(
0 0

0 1

)(
φ→

φ←

)
=

(
0

φ←

)
, φ+ ≃ 1 + σ3

2
φ =

(
1 0

0 0

)(
φ→

φ←

)
=

(
φ→

0

)
.

Reminder: Pauli & Dira
 matri
es

σ0 ≡ 1 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

γ0 = γ0 =

(
σ0 0

0 −σ0

)
, γk = −γk =

(
0 σk

−σk 0

)
, k = 1, 2, 3, γ5 = γ5 =

(
0 σ0

σ0 0

)
.
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Note that the kineti
 term of the Lagrangian in
ludes both L and R handed neutrinos and moreover,

it 
an in
lude other sterile neutrinos:

L0 =
i

2
[ν(x)γα∂αν(x)− ∂αν(x)γαν(x)] ≡ i

2
ν(x)
←→
∂ ν(x) =

i

2

[
νL(x)

←→
∂ νL(x) + νR(x)

←→
∂ νR(x)

]
,

ν(x) = νL(x) + νR(x) =




νe(x)

νµ(x)

ντ (x)

.

.

.




, νL/R(x) =




νe,L/R(x)

νµ,L/R(x)

ντ,L/R(x)

.

.

.




=
1∓ γ5

2




νe(x)

νµ(x)

ντ (x)

.

.

.




.

Neutrino 
hirality: γ5νL = −νL and γ5νR = +νR.

The Lagrangian of the theory with massless neutrinos is invariant with respe
t to the global gauge

transformations

νℓ(x)→ eiΛℓνℓ(x), ℓ(x)→ eiΛℓℓ(x) with Λℓ = 
onst.

By Noether's theorem this leads to 
onservation of the individual lepton �avor numbers (more rarely


alled lepton �avor 
harges) Lℓ. It is agreed that

Lℓ(ℓ−, νℓ) = +1, Lℓ(ℓ+, νℓ) = −1, ℓ± = e±, µ±, τ±, et
.

Lepton �avor 
onservation is not the 
ase for massive neutrinos.

There are two fundamentally di�erent kinds of neutrino mass terms: Dira
 and Majorana.

10



2 Dira
 neutrinos

The 
onventional Dira
 mass term for a single spinor �eld ψ(x) is well known:

−mψ(x)ψ(x) = −m
[
ψRψL + ψLψR

]
= −mψR(x)ψL(x) + H.
.

(the identities ψLψL = ψRψR = 0 and (ψRψL)† = ψLψR are used here).

The most general extension to the N -generation Dira
 neutrino 
ase reads:

L

D

(x) = −νR(x)M

D

νL(x) + H.
.,

where M

D

is a nonsingular [to ex
lude massless 
ase℄ 
omplexN ×N matrix.

In general, N ≥ 3 sin
e the 
olumn νL may in
lude both a
tive and sterile

neutrino �elds whi
h do not enter into the standard 
harged and neutral 
urrents.

Any nonsingular 
omplex matrix 
an be diagonalized by means of an appropriate bi-unitary

transformation

M

D

= ṼmV
†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V and Ṽ are unitary matri
es and mk ≥ 0.
=⇒ L

D

(x) = −ν ′R(x)mν′L(x) + H.
. = −ν′(x)mν′(x) = −
N∑

k=1

mkνk(x)νk(x),

where the new �elds νk are de�ned by

ν ′L(x) = V
†νL(x), ν′R(x) = Ṽ

†νR(x), ν ′(x) = (ν1, ν2, . . . , νN )T .

The �elds ν′R(x) do not enter into LI =⇒ the matrix Ṽ remains out of play...
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Sin
e VV† = V†V = 1 and Ṽ†Ṽ = ṼṼ† = 1, the neutrino kineti
 term in the Lagrangian is

transformed to

L0 =
i

2

[
ν′L(x)

←→
∂ ν′L(x) + ν′R(x)

←→
∂ ν ′R(x)

]
=
i

2
ν′(x)

←→
∂ ν ′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x).

⇓

νk(x) is the �eld of a Dira
 neutrino with the mass mk and the �avor LH neutrino �elds νℓ,L(x)

involved into the SM weak lepton 
urrents are linear 
ombinations of the LH 
omponents of the

�elds of the neutrinos with de�nite masses:

νL = Vν ′L or νℓ,L =
∑

k

Vℓkνk,L.

The matrix V is referred to as the Ponte
orvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing

matrix while the matrix Ṽ is not honored with a personal name.

Quark-lepton 
omplementarity (QLC): Of 
ourse the PMNS matrix it is not the same as the CKM

(Cabibbo-Kobayashi-Maskawa) quark mixing matrix. However the PMNS and CKM matri
es may be,

in a sense, 
omplementary to ea
h other.

The QLC means that in the same (PDG) parametrizations the sums of (small) quark and (large) lepton

mixing angles are almost (i.e., within errors) equal to π/4 for (ij) = (12) and (23):

θCKM12 + θPMNS

12 = (46.49 ± 0.77)◦, θCKM23 + θPMNS

23 = (44.48 ± 1.10)◦, sum = (90.97 ± 1.34)◦.

The origin of the data (but not QLC) will be explained below.
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2.1 Parametrization of mixing matrix for Dira
 neutrinos.

It is well known that a 
omplex n× n unitary matrix depends on n2

real parameters.

The 
lassi
al result by Fran
is Murnaghan [F. D. Murnaghan, �The unitary and rotation groups (Le
tures on

Applied Mathemati
s, Volume 3),� Spartan Books, Washington, D.C. (1962)℄ states that any n× n matrix from

the unitary group U(n) 
an be presented as produ
t of the diagonal phase matrix

Γ = diag

(
eiα1 , eiα2 , . . . , eiαn

)
,


ontaining n phases αk, and n(n− 1)/2 matri
es U whose main building blo
ks have the form

(
cos θ sin θ e−iφ

− sin θ e+iφ cos θ

)
=

(
1 0

0 e+iφ

)(
cos θ sin θ

− sin θ cos θ

)

︸ ︷︷ ︸
Euler rotation

(
1 0

0 e−iφ

)
.

Therefore any n× n unitary matrix 
an be parametrized in terms of

n(n− 1)/2 �angles� (taking values within [0, π/2])

and

n(n+ 1)/2 �phases� (taking values within [0, 2π)).

The usual parametrization of both the CKM and PMNS matri
es is of this type.

IMPORTANT: Murnaghan's fa
torization method does not spe
ify the sequen
e of the

building blo
ks Γ and U.
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One 
an redu
e the number of the phases further by taking into a

ount that the Lagrangian with

the Dira
 mass term is invariant with respe
t to the transformation

ℓ 7→ eiaℓℓ, νk 7→ eibkνk, Vℓk 7→ ei(bk−aℓ)Vℓk,

and to the global gauge transformation

ℓ 7→ eiΛℓ, νk 7→ eiΛνk, with Λ = 
onst. (1)

Therefore 2N − 1 phases are unphysi
al and the number of physi
al (Dira
) phases is

n

D

=
N(N + 1)

2
− (2N − 1) =

N2 − 3N + 2

2
=

(N − 1)(N − 2)

2
(N ≥ 2);

n

D

(2) = 0, n

D

(3) = 1, n

D

(4) = 3, . . .

• The global symmetry (1) leads to 
onservation of the lepton 
harge

L =
∑

ℓ=e,µ,τ,...

Lℓ


ommon to all 
harged leptons and all neutrinos νk. However

The individual lepton �avor numbers Lℓ are no longer 
onserved.

• The nonzero physi
al phases lead to the CP (and T ) violation in the neutrino se
tor.

a

This 
ould

have important impli
ations for parti
le physi
s and 
osmology (leptogenesis, baryogenesis,...).

a

The proof 
an be found, e.g., in Se
. 4.6 of C. Giunti and C. W. Kim, �Fundamentals of neutrino physi
s

and astrophysi
s� (Oxford University Press In
., New York, 2007) or in Se
. 6.3 of S. M. Bilenky, �Introdu
tion

to the physi
s of massive and mixed neutrinos� (2nd ed.), Le
t. Notes Phys. 947 (2018) 1�276. Note the

di�eren
es in notation and in representation for the matrix C.
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2.1.1 Three-neutrino 
ase.

In the most interesting (today!) 
ase of three lepton generations one de�nes the orthogonal rotation

matri
es in the ij-planes whi
h depend upon the mixing angles θij :

O12 =




c12 s12 0

−s12 c12 0

0 0 1




︸ ︷︷ ︸

Solar matrix

, O13 =




c13 0 s13

0 1 0

−s13 0 c13




︸ ︷︷ ︸

Rea
tor matrix

, O23 =




1 0 0

0 c23 s23

0 −s23 c23




︸ ︷︷ ︸

Atmospheri
 matrix

,

(where cij ≡ cos θij , sij ≡ sin θij) and the diagonal matrix with the Dira
 phase fa
tor:

Γ

D

= diag

(
1, 1, eiδ

)
.

The parameter δ is 
ommonly referred to as the Dira
 CP -violation/violating phase.

Finally, by applying Murnaghan's fa
torization, the PMNS matrix for the Dira
 neutrinos 
an be

parametrized as

V

(D)

= O23Γ

D

O13Γ †

D

O12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 .

⋆ This is the Chau�Keung presentation advo
ated by the PDG for both CKM and PMNS matri
es.

⋆ Remember that the positioning of the fa
tors in V

(D)

is not �xed by the Murnaghan (or any other)

algorithm and is just a subje
t-matter of agreement.

⋆ Today we believe we know a lot about the entries of this matrix.
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2.1.2 Lepton numbers are not 
onserved, so what of it?.

Sin
e the Dira
 mass term violates 
onservation of the individual lepton numbers, Le, Lµ, Lτ , it

allows many lepton family number violating pro
esses, like

µ± → e± + γ, µ± → e± + e+ + e−,

K+ → π+ + µ± + e∓, K− → π− + µ± + e∓,

µ− + (A,Z)→ e− + (A,Z), τ− + (A,Z)→ µ− + (A,Z), . . .

However the (ββ)0ν de
ay or the kaon semileptoni
 de
ays like

K+ → π− + µ+ + e+, K− → π+ + µ− + e−,

et
. are still forbidden as a 
onsequen
e of the total lepton 
harge 
onservation.

Current limits on the simplest lepton family number violating µ and τ de
ays (2020).

a

De
ay Modes Fra
tion C.L. De
ay Modes Fra
tion C.L.

µ− → e−νeνµ < 1.2% 90% τ− → e−γ < 3.3× 10−8

90%

µ− → e−γ < 4.2× 10−13

90% τ− → µ−γ < 4.4× 10−8

90%

µ− → e−e+e− < 1.0× 10−12

90% τ− → e−π0 < 8.0× 10−8

90%

µ− → e−2γ < 7.2× 10−11
90% τ− → µ−π0 < 1.1× 10−7

90%

These limits are not quite as impressive as might appear at �rst glan
e.

a

P. A. Zyla et al. (Parti
le Data Group), �Review of Parti
le Physi
s�, PTEP 2020 (2020) 083C01.
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History & future of
   LFV experiments

1940 1960 1980 2000 2020 Year

90
%

–C
.L

. 
b
ou

n
d
 

10–14

10–12

10–10

10–8

10–6

10–4

10–2

100

µ eγ

µ 3e

µN eN

τ eγ

τ 3µ10–16

SINDRUM SINDRUM II

MEG

MEG II

Mu3e I

Mu3e II

Comet II/Mu2e

DeeMee/
Comet I

Pontecorvo (1947)

[From N. Berger, �Charged lepton �avour violation experiments,� talk at the Z�uri
h Phenomenology Workshop, January

2015. For details, see W. J. Mar
iano, T. Mori, and J. M. Roney, �Charged lepton �avor violation experiments,� Ann.

Rev. Nu
l. Part. S
i. 58 (2008) 315�341. Is not yet updated!℄
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2.1.3 Neutrinoless muon de
ay in SM.

The Lµ and Le violating muon de
ay µ− → e−γ is

allowed if V ∗µkVek 6= 0 for k = 1, 2 or 3. The 
orresponding

Feynman diagrams in
lude W loops and thus the de
ay

width is strongly suppressed by the neutrino to W boson

mass ratios:

R =
Γ
(
µ− → e−γ

)

Γ (µ− → e−νµνe)
=

3α

32π

∣∣∣∣∣
∑

k

V ∗µkVek
m2

k

m2
W

∣∣∣∣∣

2

.

Sin
e mk/mW ≈ 1.244× 10−12 (mk/0.1 eV), the ratio


an be estimated as

R ≈ 5.22× 10−52

∣∣∣∣∣
∑

k

V ∗µkVek

(
mk

0.1 eV

)2

∣∣∣∣∣

2

. 8× 10−54,

while the 
urrent experimental upper limit is (at least!) 40

orders of magnitude larger (see Table in p. 16):

R

(exp)

< 4.2× 10−13

at 90% C.L. (NO GO!)

Some nonstandard models are mu
h more optimisti
.

We must deeply appre
iate the os
illation phenomenon

whi
h makes the miserable ν mass e�e
t measurable.

W W

γ

µ eν
kV

µk Vek

∗

Wγ

µ eν
kV

µk Vek

∗

W γ

µ eν
kV

µk Vek

∗
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2.2 Nu
lear beta de
ay.

The method of measurement of the (anti)neutrino mass through the investigation of the high-energy

part of the β-spe
trum was proposed by Perrin (1933) and Fermi (1934).

The �rst experiments on the measurement of the neutrino mass with this method have been done by

Curran, Angus and Co
k
roft (1948) and Hanna and Ponte
orvo (1949).

The energy spe
trum of ele
trons in the de
ay (A,Z)→ (A,Z + 1) + e− + νe is

a

dΓ

dT
=
∑

k

|Vek|2 dΓk

dT
, (2)

dΓk

dT
=

(GF cos θC)2

2π3
ppk (T +me) (Q− T ) |M|2 F (T, Z)θ (Q− T −mk). (3)

Here GF is the Fermi 
onstant, θC is the Cabibbo angle, me, p and T are the mass, magnitude of

the momentum and kineti
 energy of the ele
tron, respe
tively,

pk =
√
E2

k −m2
k =

√
(Q− T )2 −m2

k and Q = Ek + T = EA,Z −EA,Z+1 −me

are, respe
tively, the magnitude of the neutrino momentum and energy released in the de
ay (the

endpoint of the β spe
trum in 
ase mk = 0),M is the nu
lear matrix element, and F (T, Z) is the

Fermi fun
tion, whi
h des
ribes the Coulomb intera
tion of the �nal-state nu
leus and ele
tron.

The step fun
tion in Eq. (3) ensures that a neutrino state νk is only produ
ed if its total energy is

larger than its mass: Ek = Q− T ≥ mk.

a

The re
oil of the �nal nu
leus and radiative 
orre
tions (lu
kily small) are negle
ted.
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As it is seen from Eq. (2), the largest distortion of the β-spe
trum due to neutrino masses 
an be

observed in the region

Q− T ∼ mk. (4)

However, for max (mk) ≃ 0.1 eV only a very small part (about 10−(13−14)

) of the de
ays give


ontribution to the region (4). This is the reason why in the analysis of the results of the

measurement of the β-spe
trum a relatively large part of the spe
trum is used.

a

Taking this into a

ount and applying unitarity of the mixing matrix, we 
an write

∑

k

|Vek|2 pk ≈
∑

k

|Vek|2 (Q− T )

[
1− m2

k

2(Q− T )2

]
⇐= 4E2

k ≫ m2
k

= (Q− T )

[
1− 1

2(Q− T )2

∑

k

|Vek|2 m2
k

]
⇐=

∑

k

|Vek|2 = 1

≈
√

(Q− T )2 −m2
β ,

where the e�e
tive neutrino mass mβ is de�ned by

m2
β =

∑

k

|Vek|2 m2
k

and it was assumed that

max
k

(
m2

k

)
≪ 4(Q− T )2.

a

For example, in the Mainz tritium experiment (see below) the last 70 eV of the spe
trum is used.
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Finally, the β-spe
trum that is used for �tting

the data 
an be presented as

dΓ

dT
∝ p (T +me) |M|2 F (T )K2(T ),

where we have de�ned the Kurie fun
tion

(sometimes 
alled Fermi-Kurie fun
tion)

K(T )∝
√

dΓ/dT

p (T +me) |M|2 F (T )

≈ (Q− T )

[
1− m2

β

(Q− T )2

]1/4

developed by Franz Newell Devereux Kurie.

Unfortunately, the real-life situation is

mu
h more 
ompli
ated.

Kurie plot for allowed pro
esses is a sensitive test of mβ ,

while the �rst order forbidden pro
esses should have a

distorted Kurie plot.

In an a
tual experiment, the measurable quantity is a sum of β spe
tra, leading ea
h with probability

Pn = Pn(E0 − Vn − E) to a �nal state n of ex
itation energy Vn:

dΓ (T,Q)

dT
7−→

∑

n

Pn (E0 − Vn −E)
dΓ (T,E0 − Vn)

dT
.

Here E0 = Q− E the ground-state energy and E is the re
oil energy of the daughter nu
leus.
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2.2.1 Tritium beta de
ay.

An important issue is the de
ay of

mole
ular tritium T2 →
(

3

HeT

)+
+ e− + νe.

Considering the most pre
ise dire
t

determination of the mass di�eren
e

m(T)−m
(

3

He

)
= (18590.1± 1.7) eV/c2

and taking into a

ount the re
oil and

apparative e�e
ts (these are taken for the

Mainz experiment) one derives an endpoint

energy of the mole
ular ion

(
3

HeT

)+

ground

state:

E0 = (18574.3± 1.7) eV.

The ex
itation spe
trum is shown in the

�gure. The �rst group 
on
erns rotational and

vibrational ex
itation of the mole
ule in its

ele
troni
 ground state; it 
omprises a fra
tion

of Pg = 57.4% of the total rate.

Ex
itation spe
trum of the daughter mole
ular ion(
3

HeT

)+

in β de
ay of mole
ular tritium.

For more details, see C. Kraus et al., �Final results from phase II of the Mainz neutrino mass sear
h in tritium

β de
ay,� Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056.
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m
  
 (

eV
/c

  
)

2
β

Publ. year

Curran, Angus & Cockroft

Hanna & Pontecorvo

Langer & Moffat
Hamilton, Alford & Gross

Bergkvist

ITEP (1)

ITEP (2)

Zurich

INS (Tokyo)
Los Alamos

Mainz

Troitsk

Troitsk
Mainz Troitsk

Karlsruhe

arXiv:1909.06048 [hep-ex]

KATRIN

© 1948 Nature Publ. Group

Nature 162 (1948) 302-303

Progress of the neutrino mass measurements in

tritium β de
ay, in
luding the �nal Mainz phase II,

Troitsk, and KATRIN upper limits (see below).

[The 
ompilation is taken from V. M. Lobashev, �Dire
t sear
h

for mass of neutrino,� in Pro
eedings of the 18th International

Conferen
e on Physi
s in Collision (�PIC 98�), Fras
ati, June 17�

19, 1998, pp. 179�194 and supplemented with the re
ent data.℄

⊳ The history of the sear
h for the

neutrino mass in the tritium β de
ay


ounts more than 60 years. In 1980,

the steady improvement of the upper

limit was suddenly speeded up by a

report of the ITEP group (Mos
ow)

on the observation of the nonzero

neutrino mass e�e
t in the β-spe
trum

in the valine mole
ule (C5H9T2NO2).

The reported result was

a

14 ≤ mβ ≤ 46 eV/c2 (99% C.L.)

This resear
h stimulated more than

20 experimental proposals with an

intention to 
he
k this 
lime. Alas!. . .
in several years the experimental groups

from Z�uri
h, Tokyo, Los Alamos, and

then Livermore refuted the ITEP result.

a

V. A. Lyubimov, E. G. Novikov,

V. Z. Nozik, E. F. Tretyakov, and V. S. Kosik,

�An estimate of the νe mass from the β-

spe
trum of tritium in the valine mole
ule,�

Phys. Lett. B 94 (1980) 266�268 (∼ 500


itations in InSPIRE! by the end of 2021).
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The top �gure shows the data points

from the tail of the β-spe
trum measured

in the Los Alamos tritium experiment


ompared with the expe
ted values (the

straight line) for mβ = 30 eV. The data

wander from the line, ruling out the

possibility of a 30-eV neutrino.

The bottom �gure shows the same data

points 
ompared with the expe
tation for

mβ = 0. While the data 
learly favor a

neutrino mass of zero, the best �t is

a
tually for a slightly negativemβ . (Note

that in the bottom plot, the data points

lie, on average, slightly above the line, so

this is not a perfe
t �t.)

Both plots display �residuals,� whi
h

indi
ate how many standard deviations

ea
h data point is from a parti
ular

hypothesis.
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Did the neutrino weigh 30 ele
tron volts?

[Borrowed from T. J. Bowles and R. G. H. Robertson, �Tritium beta de
ay and the sear
h for neutrino mass,� Los

Alamos S
i. 25 (1997) 6�11.℄
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Mainz 1998-2001 final (2005):

m  = -0.6   2.2       2.1     eV /c
β

Troitsk 1994-2004 reanalised (2011):

m  = -0.67   1.89       1.68     eV /c
β
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KATRIN

KATRIN 2nd compaign (2021):

m  = 0.26   0.34 eV /c 
β

2 42 +
− At last!

KATRIN 2021

⊳ The �gure shows the results on them2
β

measurements in the tritium β de
ay

experiments reported after 1990.

The already �nished experiments at

Los Alamos, Z�uri
h, Tokyo, Beijing and

Livermore used magneti
 spe
trometers,

while the experiments at Troitsk (ν mass),

Mainz, and Karlsruhe (KATRIN) are using

high-resolution ele
trostati
 �lters with

magneti
 adiabati
 
ollimation.

The progress in the observable mβ of

the latest Mainz, Troitsk, and KATRIN

results as 
ompared to the most sensitive

earlier experiments approa
hes two orders

of magnitude.

[The �gure in this slide in
ludes the data from C. Kraus et al., Eur. Phys. J. C 40 (2005) 447�468, hep-ex/0412056;

V. N. Aseev et al., Phys. Rev. D 84 (2011) 112003, arXiv:1108.5034 [hep-ex℄; M. Aker et al., Phys. Rev. Lett. 123

(2019) 221802, arXiv:1909.06048 [hep-ex℄ M. Aker et al., arXiv:2105.08533 [hep-ex℄. ℄

The negative m2
β most probably was �instrumental�. After KATRIN (2021), only a very small spa
e remains

for fans of heterodox models with ta
hyoni
 neutrino states (more generally � superpositions of bradyon-luxon-

ta
hyon states), pseudota
hyoni
 (m2
ν < 0, v = E/p), or perhaps superbradyoni
 (mν > 0, v > 1) neutrinos.
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2.2.2 Summary of the KATRIN result from the �rst s
ien
e run (KNM1).

The best �t value of the e�e
tive neutrino mass square was found to be

a

m2
β =

(
−1.0+0.9

−1.1

)

eV

2.

This result 
orresponds to a 1σ statisti
al

�u
tuation to negative values of m2
β

possessing a p-value of 0.16. The total

un
ertainty budget of m2
β is largely dominated

by σ

stat

(0.97 eV

2

) as 
ompared to σ

syst

(0.32 eV

2

). These un
ertainties are smaller by

a fa
tor of 2 and 6, respe
tively, 
ompared to

the �nal results of Troitsk and Mainz.

KATRIN data with 1σ errorbars   50 

Fit result
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Spectrum of electrons over a 90 eV-wide interval
from all 274 tritium scans and best-fit model

The methods of Lokhov and Tka
hov (LT) and of Feldman and Cousins (FC) are then used to


al
ulate the upper limit on the absolute mass s
ale of neutrino:

mβ < 1.1 eV at 90% C.L. (LT), mβ < 0.8 (0.9) eV at 90 (95)% C.L. (FC).

The LT value (the 
entral result of the experiment) 
oin
ides with the KATRIN sensitivity. It is based

on a purely kinemati
 method and improves upon previous works by almost a fa
tor of two after a

measuring period of only four weeks while operating at redu
ed 
olumn density.

After 1000 days of data taking at nominal 
olumn density and further redu
tions of systemati
s the

Karlsruhe Tritium Neutrino experiment KATRIN will rea
h a sensitivity of 0.2 eV (90% C.L.) on mβ .

a

M. Aker et al., �An improved upper limit on the neutrino mass from a dire
t kinemati
 method by KATRIN,�

Phys. Rev. Lett. 123 (2019) 221802, arXiv:1909.06048 [hep-ex℄.
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2.2.3 Summary of the KATRIN result from the se
ond s
ien
e run (KNM2).

In the 2nd physi
s run, the sour
e a
tivity was in
reased by a fa
tor of 3.8 and the ba
kground was

redu
ed by 25% with respe
t to the 1st 
ampaign.

a

A sensitivity on mβ of 0.7 eV at 90% C.L. was

rea
hed. This is the �rst sub-eV sensitivity from a dire
t neutrino-mass experiment.

β

P
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Y
S
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A
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E
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T
O

R
The best �t to the spe
tral data yields

mβ = 0.26± 0.34 eV, resulting in an upper

limit of mβ < 0.9 eV (90% C.L.), using

the Lokhov-Tka
hov method. The Feldman-

Cousins te
hnique yields the same limit. The

resulting Bayesian limit at 90% C.L. is

mβ < 0.85 eV.

A simultaneous �t of both KNM1 and KNM2

data sets yieldsmβ = 0.1± 0.3 eV, resulting an

improved limit of mβ < 0.8 eV (90% C.L.).

As both data sets are statisti
s-dominated,


orrelated systemati
 un
ertainties between

both 
ampaigns are negligible.

⊳ The �gure displays the evolution of

best-�t mβ results from histori
al ν-mass

measurements (
.f. p. 25).

mβ < 0.9 eV at 90 % C.L. (KNM2), mβ < 0.8 eV at 90 % C.L. (KNM1+KNM2).

a

M. Aker et al., �First dire
t neutrino-mass measurement with sub-eV sensitivity�, Nature Phys. 18 (2022)

160�166, arXiv:2105.08533 [hep-ex℄; see also arXiv:2203.08059 [nu
l-ex℄, submitted to Nature Physi
s.
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3 Majorana neutrinos.

The 
harge 
onjugated bispinor �eld ψc

is de�ned by the transformation

ψ 7−→ ψc = CψT , ψ 7−→ ψc = −ψTC,

where C is the 
harge-
onjugation matrix whi
h satis�es the 
onditions

CγT
αC
† = −γα, CγT

5 C
† = γ5, C† = C−1 = C, CT = −C,

and thus 
oin
ides (up to a phase fa
tor) with the inversion of the axes x0

and x2: C = γ0γ2.

Clearly the 
harged fermion �eld ψ is di�erent from the 
harge-
onjugated

�eld ψc

but a neutral fermion �eld ν 
an 
oin
ide with the 
harge-
onjugated one νc

. In other words:

for a neutral fermion (neutrino, neutralino) �eld ν(x) the following 
ondition is not forbidden:

a

νc(x) = ν(x) (Majorana 
ondition) ⇐⇒ Majorana neutrino and antineutrino 
oin
ide!

A few more details: In the 
hiral representation

ν =

(
φ

χ

)
, νc = CνT =

(
−σ2χ∗

+σ2φ∗

)
. =⇒

{
φ = −σ2χ

∗,

χ = +σ2φ
∗ =⇒ φ+ χ = σ2 (φ− χ)∗.

The Majorana neutrino is two-
omponent, i.e., it is de�ned by only one 
hiral proje
tion. Then (
.f. p. 9)

νL = PLν =

(
φ− χ

χ− φ

)

and νR = PRν =

(
φ+ χ

φ+ χ

)
= νc

L. =⇒ ν = νL + νR = νL + νc
L.

a

The simplest generalization of the Majorana 
ondition, νc(x) = eiϕν(x) (ϕ = 
onst), is not very interesting.
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The Majorana mass term in the general N -neutrino 
ase is [Gribov & Ponte
orvo (1969)℄:

L

M

(x) = −1

2
νc

L(x)M

M

νL(x) + H.
.,

Here M

M

is a N ×N 
omplex nondiagonal matrix and, in general, N ≥ 3.

It 
an be proved that the M

M

should be symmetri
, M
T

M

= M

M

. Assuming for simpli
ity that its

spe
trum is non-degenerated, the mass matrix 
an be diagonalized by means of the following

transformation [Bilenky & Pet
ov (1987)℄

M

M

= V
∗
mV

†, m = ||mkδkl|| = diag (m1,m2, . . . ,mN ),

where V is a unitary matrix and mk ≥ 0. Therefore

L

M

(x) = −1

2

[
(ν′L)c

mν ′L + ν ′Lm(ν′L)c
]

= −1

2
ν′mν′ = −1

2

N∑

k=1

mkνkνk,

ν ′L = V
†νL, (ν′L)c = C

(
ν′L
)

T , ν′ = ν′L + (ν′L)c.

The last equality means that the �elds νk(x) are Majorana neutrino �elds. Considering that the

kineti
 term in the neutrino Lagrangian is transformed to

a

L0 =
i

2
ν ′(x)

←→
∂ ν′(x) =

i

2

∑

k

νk(x)
←→
∂ νk(x),

one 
an 
on
lude that νk(x) is the �eld with the de�nite mass mk.

a

This also explains the origin of the fa
tor 1/2 in the Majorana mass term.
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The �avor LH neutrino �elds νℓ,L(x) present in the standard weak lepton 
urrents are linear


ombinations of the LH 
omponents of the �elds of neutrinos with de�nite masses:

νL = Vν′
L or νℓ,L =

∑

k

Vℓkνk,L.

Of 
ourse neutrino mixing matrix V is not the same as in the 
ase of Dira
 neutrinos.

There is no global gauge transformations under whi
h the Majorana mass term (in its most

general form) 
ould be invariant. This implies that there are no 
onserved lepton 
harges that


ould allow us to distinguish Majorana νs and νs. In other words,

Majorana neutrinos are truly neutral fermions.

3.1 Parametrization of mixing matrix for Majorana neutrinos.

Sin
e the Majorana neutrinos are not rephasable, there may be a lot of extra phase fa
tors in

the mixing matrix. The Lagrangian with the Majorana mass term is invariant with respe
t to

the transformation

ℓ 7→ eiaℓℓ, Vℓk 7→ e−iaℓVℓk
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Therefore N phases are unphysi
al and the number of the physi
al phases now is

N(N + 1)

2
−N =

N(N − 1)

2
=

(N − 1)(N − 2)

2︸ ︷︷ ︸

Dira
 phases

+ (N − 1)︸ ︷︷ ︸

Majorana phases

= n

D

+ n

M

;

n

M

(2) = 1, n

M

(3) = 2, n

M

(4) = 3, . . .

In fa
t all phases are Majorana and the above notation is provisional and unorthodox.

In the 
ase of three lepton generations one de�nes the diagonal matrix with the extra phase fa
tors:

Γ

M

= diag

(
eiα1/2, eiα2/2, 1

)
, where α1,2 are 
ommonly referred to as the Majorana CP -violation

phases. Then the PMNS matrix 
an be parametrized as

V

(M)

= O23Γ

D

O13Γ †

D

O12Γ

M

= V

(D)

Γ

M

=




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13






eiα1/2 0 0

0 eiα2/2 0

0 0 1


 ,

Neither Lℓ nor L =
∑

ℓ
Lℓ is now 
onserved allowing a lot of new pro
esses, for example,

τ− → e+(µ+)π−π−, τ− → e+(µ+)π−K−, π− → µ+νe, K+ → π−µ+e+

, K+ → π0e+νe,

D+ → K−µ+µ+

, B+ → K−e+µ+

, Ξ− → pµ−µ−, Λ+
c → Σ−µ+µ+

, et
.

Needless to say that no one was dis
overed yet [see RPP℄ but (may be!?) the (ββ)0ν de
ay.

The following se
tion will dis
uss this issue with some detail.
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3.2 Neutrinoless double beta de
ay.

The theory with Majorana neutrinos allows the de
ay

(A,Z)→ (A,Z + 2) + 2e− [0νββ ≡ (ββ)0ν ]

with ∆L = 2. The de
ay rate for this pro
ess is expressed as

follows:

[
T 0ν

1/2

]−1
= G0ν

Z |mββ |2
∣∣M0ν

F

− (gA/gV )2M0ν

GT

∣∣2,

where G0ν
Z is the two-body phase-spa
e fa
tor in
luding


oupling 
onstant, M0ν

F/GT

are the Fermi/Gamow-Teller

nu
lear matrix elements. The 
onstants gV and gA are the

ve
tor and axial-ve
tor relative weak 
oupling 
onstants,

respe
tively. The 
omplex parameter mββ is the e�e
tive

Majorana ele
tron neutrino mass given by

mββ =
∑

k

V 2
ekmk =

∑

k

|Vek|2eiφkmk

= |Ve1|2 m1 + |Ve2|2 m2e
iφ2 + |Ve3|2 m3e

iφ3 .

Here φ1 = 0, φ2 = α2 − α1 (pure Majorana phase) and

φ3 = −(α2 + 2δ) (mixture of Dira
 and Majorana CP -

violation phases).
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W
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The ele
tron sum energy spe
trum

of the (ββ)2ν mode as well as of

the exoti
 modes with one or two

majorons in �nal state,

(A,Z)→ (A,Z + 2) + 2e− + χ,

(A,Z)→ (A,Z + 2) + 2e− + 2χ,

is 
ontinuous be
ause the available

energy release (Qββ) is shared

between the ele
trons and other �nal

state parti
les. In 
ontrast, the two

ele
trons from the (ββ)0ν de
ay 
arry

the full available energy, and hen
e

the ele
tron sum energy spe
trum

has a sharp peak at the Qββ value.

This feature allows one to distinguish

the (ββ)0ν de
ay signal from the

ba
kground.

The ele
tron sum energy spe
tra 
al
ulated for the di�erent

β de
ay modes of 
admium-116.

[From Y. Zdesenko, �Colloquium: The future of double beta de
ay

resear
h,� Rev. Mod. Phys. 74 (2003) 663�684.℄

Majoron is a Nambu-Goldstone boson, � a hypotheti
al neutral pseudos
alar zero-mass parti
le whi
h 
ouples

to Majorana neutrinos and may be emitted in the neutrinoless β de
ay. It is a 
onsequen
e of the spontaneous

breaking of the global B − L symmetry.
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The 
urrently allowed ranges of

mββ observables of 0νββ de
ay is

shown as a fun
tion of the lightest

neutrino mass m0. In the 
ase of

normal (inverted) mass ordering the

ranges are shown by green (blue)


olor. The light (dark) 
olored

regions are 
omputed by taking into

a

ount (without taking a

ount)

the 
urrent 1σ un
ertainties of the

relevant mixing parameters.

Also shown are the limits on mββ


oming from KamLAND-Zen and

EXO-200 (by the light brown band

and arrow) and the bounds on m0

obtained by Plan
k.

Normal Ordering with uncertainty
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Note that the �KamLAND-Zen+EXO200� bound spans a broad band (rather than a line) be
ause of

the nu
lear matrix element un
ertainty.

It is remarkable that the e�e
t of the 1σ un
ertainties of the mixing parameters is quite small. In


ontrast, variation over the Majorana phases gives mu
h larger impa
t on allowed region of mββ , not

only produ
ing sizeable width but also 
reating a down-going bran
h at 10−3

eV . m0 . 10−2

eV for

the 
ase of the normal mass ordering due to the strong 
an
ellation of the three mass terms.

[From H. Minakata, H. Nunokawa, and A. A. Quiroga, �Constraining Majorana CP phase in the pre
ision era of


osmology and the double beta de
ay experiment,� PTEP 2015 (2015) 033B03, arXiv:1402.6014 [hep-ph℄.℄
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