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6 Neutrino refra
tion.

It has been noted by Wolfenstein

a

that neutrino os
illations in a medium are a�e
ted by

intera
tions even if the thi
kness of the medium is negligible in 
omparison with the neutrino

mean free path.

Let us forget for the moment about the inelasti
 
ollisions and 
onsider the simplest 
ase of a

ultrarelativisti
 neutrino whi
h moves in an external (e�e
tive) potential W formed by the

matter ba
kground. If the neutrino momentum in va
uum was p then its energy was

≃ p = |p|. When the neutrino enters into the medium, its energy be
omes E = p+W . Let

us now introdu
e the index of refra
tion n = p/E whi
h is a positive value in the absen
e of

inelasti
 
ollisions. Therefore

W = (1 − n)E ≃ (1 − n)p. (18)

In the last step, we took into a

ount that neutrino intera
tion with matter is very weak,

|W | ≪ E, and thus E ≃ p is a good approximation.

The natural generalization of Eq. (13) for the time evolution of neutrino �avor states in

matter then follows from this simple 
onsideration and the quantum-me
hani
al


orresponden
e prin
iple.

a

L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
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This is the famous Wolfenstein equation:

i
d

dt
|ν(t)〉

f
=
[
VH0V† + W(t)

]
|ν(t)〉

f
, (19)

where

W(t) = diag

(
1 − nνe

, 1 − nνµ
, 1 − nντ

, . . .
)
p (20)

is the intera
tion Hamiltonian.

It will be useful for the following to introdu
e the time-evolution operator for the �avor states

de�ned by

|ν(t)〉
f

= S(t)|ν(0)〉
f
.

Taking into a

ount that |ν(t)〉
f

must satisfy Eq. (19) for any initial 
ondition

|ν(t = 0)〉
f

= |ν(0)〉
f

, the Wolfenstein equation 
an be immediately rewritten in terms of

the evolution operator:

iṠ(t) =
[
VH0V† + W(t)

]
S(t), S(0) = 1. (21)

This equation (or its equivalent (19)) 
annot be solved analyti
ally in the general 
ase of a

medium with a varying (along the neutrino pass) density. But for a medium with a slowly

(adiabati
ally) varying density distribution the approximate solution 
an be obtained by a

diagonalization of the e�e
tive Hamiltonian. Below we will 
onsider this method for a rather

general 2-�avor 
ase but now let us illustrate (without derivation) the simplest situation with

a matter of 
onstant density.
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6.1 Matter of 
onstant density.

In the 2-�avor 
ase, the transition probability is given by the formula very similar to that for va
uum:

Pαα′ (L) =
1

2
sin2 2θ

m

[
1− cos

(
2πL

L

m

)]
,

L

m

= L

v

[
1− 2κ (L

v

/L0) cos 2θ + (L

v

/L0)2
]−1/2

.

The L

m

is 
alled the os
illation length in matter and is de�ned through the following quantities:

L

v

≡ L23 =
4πE

∆m2
, L0 =

√
2πA

GFNAZρ
≈ 2R⊕

(
A

2Z

)(
2.5 g/
m

3

ρ

)
,

κ = sign

(
m2

3 −m2
2

)
, ∆m2 =

∣∣m2
3 −m2

2

∣∣ .

The parameter θ

m

is 
alled the mixing angle in matter and is given by

sin 2θ

m

= sin 2θ
(
L

m

L
v

)
,

cos 2θ

m

=
(

cos 2θ − κLv

L0

)(
L

m

L

v

)
.

The solution for antineutrinos is the same but with the repla
ement

κ 7−→ −κ.

The 
loseness of the value of L0 to the Earth's diameter is even more surprising than that for L

v

.

The matter e�e
ts are therefore important for atmospheri
 neutrinos.
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7 Propagation of high-energy mixed neutrinos through

matter.

�The matter doesn't matter�

Lin
oln Wolfenstein, le
ture given at 28th

SLAC Summer Institute on Parti
le Physi
s

�Neutrinos from the Lab, the Sun, and the

Cosmos�, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through va
uum there is a phase 
hange exp
(
−im2

i t/2pν

)
. For two

mixed �avors there is a resulting os
illation with length

L

va


=
4πEν

∆m2
≈ D⊕

(
Eν

10 GeV

)(
0.002 eV

2

∆m2

)
.

In matter there is an additional phase 
hange due to refra
tion asso
iated with forward s
attering

exp [ipν(Ren− 1)t].

The 
hara
teristi
 length (for a normal medium) is

L

ref

=

√
2A

GFNAZρ
≈ D⊕

(
A

2Z

)(
2.5 g/
m

2

ρ

)
.

It is generally believed that the imaginary part of the index of refra
tion n whi
h des
ribes the

neutrino absorption due to inelasti
 intera
tions does not a�e
t the os
illation probabilities or at the

least inelasti
 intera
tions 
an be someway de
oupled from os
illations.
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The 
onventional arguments are

• Ren− 1 ∝ GF while Imn ∝ G2
F ;

• Only ∆n may a�e
t the os
illations and ∆Imn is all the more negligible.

It will be shown that these arguments do not work for su�
iently high neutrino energies and/or for

thi
k media =⇒ in general absorption 
annot be de
oupled from refra
tion and mixing.

a

By using

another 
ant phrase of Wolfenstein, one 
an say that

�In some 
ir
umstan
es the matter 
ould matter.�

7.1 Generalized MSW equation.

Let

fναA(0) be the amplitude for the να zero-angle s
attering from parti
le A of the matter

ba
kground (A = e, p, n, . . .),

ρ(t) be the matter density (in g/
m

3

),

YA(t) be the number of parti
les A per amu in the point t of the medium, and

N0 = 6.02214199 × 1023


m

−3

be the referen
e parti
le number density (numeri
ally equal to

Avogadro's number).

Then the index of refra
tion of να for small |n− 1| (for normal media |n− 1|≪ 1) is given by

nα(t) = 1 +
2πN0ρ(t)

p2
ν

∑

A

YA(t)fναA(0),

where pν is the neutrino momentum.

apν Imn ∝ σtot (pν) grows fast with energy while pν (Ren− 1) is a 
onstant or de
reasing fun
tion of Eν .
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Sin
e the amplitude fναA(0) is in general a 
omplex number, the index of refra
tion is also 
omplex.

Its real part is responsible for neutrino refra
tion while the imaginary part � for absorption. From the

opti
al theorem of quantum me
hani
s we have

Im [fναA(0)] =
pν

4π
σtotναA (pν).

This implies that

pν Im [nα(t)] =
1

2
N0ρ(t)

∑

A

YA(t)σtotναA (pν) =
1

2Λα (pν , t)
,

where

Λα (pν , t) =
1

Σtot

α (pν , t)
=
λtota (pν , t)

ρ(t)
.

is the mean free path [in 
m℄ of να in the point t of the medium. Sin
e the neutrino momentum, pν ,

is an extrinsi
 variable in Eq. (22), we will sometimes omit this argument to simplify formulas.

The generalized MSW equation for the time-evolution operator

S(t) =

(
Sαα(t) Sαβ(t)

Sβα(t) Sββ(t)

)

of two mixed stable neutrino �avors να and νβ propagating through an absorbing medium 
an be

written as

i
d

dt
S(t) =

[
VH0V

T + W(t)
]

S(t), (S(0) = 1) . (22)
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Here

V=

(
cos θ sin θ

− sin θ cos θ

)

is the va
uum mixing matrix (0 ≤ θ ≤ π/2),
H0=

(
E1 0

0 E2

)

is the va
uum Hamiltonian for ν mass eigenstates,

Ei=
√
p2
ν +m2

i ≃ pν +m2
i /2pν is the energy of the νi eigenstate,

W(t)= −pν
(
nα(t) − 1 0

0 nβ(t) − 1

)

is the intera
tion Hamiltonian.

7.2 Master equation.

It is useful to transform MSW equation into the one with a tra
eless Hamiltonian. For this

purpose we de�ne the matrix

S̃(t) = exp

{
i

2

∫ t

0
Tr [H0 + W(t′)] dt′

}
S(t).

The master equation (ME) for this matrix then is

i
d

dt
S̃(t) = H(t)S̃(t), S̃(0) = 1. (23)
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The e�e
tive Hamiltonian is de�ned by

H(t) =

(
q(t) − ∆c ∆s

∆s −q(t) + ∆c

)
,

∆c = ∆ cos 2θ, ∆s = ∆ sin 2θ, ∆ =
m2

2 −m2
1

4pν
,

q(t) = qR(t) + iqI(t) =
1

2
pν [nβ(t) − nα(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re [fναA(0)] = −Re [fναA(0)] and Im [fναA(0)] 6= Im [fναA(0)].

The neutrino os
illation probabilities are

P [να(0) → να′(t)] ≡ Pαα′(t) = |Sα′α(t)|2 = A(t)
∣∣∣S̃α′α(t)

∣∣∣
2

, (24)

where

A(t) = exp

[
−
∫ t

0

dt′

Λ(t′)

]
,

1

Λ(t)
=

1

2

[
1

Λα(t)
+

1

Λβ(t)

]
.

Owing to the 
omplex potential q, the Hamiltonian H(t) is non-Hermitian and the new

evolution operator S̃(t) is nonunitary. As a result, there are no 
onventional relations between

Pαα′(t).
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Sin
e

qI(t) =
1

4

[
1

Λβ(t)
− 1

Λα(t)

]
,

the matrix H(t) be
omes Hermitian when Λα = Λβ. If this is the 
ase at any t, the ME

redu
es to the standard MSW equation and inelasti
 s
attering results in the 
ommon

exponential attenuation of the probabilities. From here, we shall 
onsider the more general

and more interesting 
ase, when Λα 6= Λβ.

7.3 Examples.

να − νs

This is the extreme example. Sin
e Λs = ∞, we have Λ = 2Λα and qI = −1/4Λα. So qI 6= 0

at any energy. Even without solving the evolution equation, one 
an expe
t the penetrability

of a
tive neutrinos to be essentially modi�ed in this 
ase be
ause, roughly speaking, they

spend a 
ertain part of life in the sterile state. In other words, sterile neutrinos �tow� their

a
tive 
ompanions through the medium as a tugboat. On the other hand, the a
tive neutrinos

�retard� the sterile ones, like a bulky barge retards its tugboat. As a result, the sterile

neutrinos undergo some absorption.
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νe,µ − ντ

Essentially at all energies, σCCνe,µN
> σCCντN

. This is be
ause of large value of the τ lepton

mass, mτ , whi
h leads to several 
onsequen
es:

1. high neutrino energy threshold for τ produ
tion;

2. sharp shrinkage of the phase spa
es for CC ντN rea
tions;

3. kinemati
 
orre
tion fa
tors (∝ m2
τ ) to the nu
leon stru
ture fun
tions (the


orresponding stru
tures are negligible for e produ
tion and small for µ produ
tion).

The neutral 
urrent 
ontributions are 
an
eled out from qI . Thus, in the 
ontext of the

master equation, ντ 
an be treated as (almost) sterile within the energy range for whi
h

σCCνe,µN
≫ σCCντN

(see Figures in pp. 109�110).

νe − να

A similar situation, while in quite a di�erent and narrow energy range, holds in the 
ase of

mixing of νe with some other �avor. This is a parti
ular 
ase for a normal C asymmetri


medium, be
ause of the W boson resonan
e formed in the neighborhood of

Eres

ν = m2
W /2me ≈ 6.33 PeV through the rea
tions

νee
− → W− → hadrons and νee

− → W− → νℓℓ
− (ℓ = e, µ, τ).

Let's remind that σtotνee
≈ 250 σtotνeN

just at the resonan
e peak.
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7.4 Total 
ross se
tions.

A

ording to Albright and Jarlskog

a

dσCCν, ν
dxdy

=
G2
FmNEν
π

(A1F1 + A2F2 ± A3F3+A4F4 +A5F5 ),

where Fi = Fi(x,Q
2) are the nu
leon stru
ture fun
tions and Ai are the kinemati
 fa
tors

i = 1, . . . , 5). These fa
tors were 
al
ulated by many authors

b

and the most a

urate

formulas were given by Pas
hos and Yu:

A1 = xy2 +
m2
l y

2mNEν
, A2 = 1 − y − mN

2Eν
xy − m2

l

4E2
ν

, A3 = xy
(

1 − y

2

)
− m2

l y

4mNEν
,

A4 =
m2
l

2mNEν

(
xy +

m2
l

2mNEν

)
, A5 = − m2

l

2mNEν
.

The 
ontributions proportional to m2
ℓ must vanish as Eν ≫ mℓ. However they remain

surprisingly important even at very high energies.

a

C. H. Albright and C. Jarlskog, Nu
l. Phys. B 84 (1975) 467�492; see also I. Ju, Phys. Rev. D 8 (1973)

3103�3109 and V. D. Barger et al., Phys. Rev. D 16 (1977) 2141�2157.

b

See previous footnote and also the more re
ent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya, Eur.

Phys. J. C 18 (2000) 405�416, hep-ph/9905475; N. I. Starkov, J. Phys. G 27 (2001) L81�L85; E. A. Pas
hos

and J. Y. Yu, Phys. Rev. D 65 (2002) 033002, hep-ph/0107261.
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7.5 Indi
es of refra
tion.

For Eν ≪ min

(
m2
W,Z/2mA

)

and for an ele
troneutral nonpolarized 
old medium, the qR is

energy independent. In the leading orders of the standard ele
troweak theory it is

qR =





1
2V0Ypρ for α = e and β = µ or τ ,

− 1
2aτV0 (Yp + bτYn) ρ for α = µ and β = τ ,

1
2V0

(
Yp − 1

2Yn
)
ρ for α = e and β = s,

1
4V0Ynρ for α = µ or τ and β = s,

where

V0 =
√

2GFN0 ≃ 7.63 × 10−14

eV

(
L0 =

2π

V0
≃ 1.62 × 104

km ∼ D⊕

)
,

aτ =
3αrτ [ln(1/rτ ) − 1]

4π sin2 θW
≃ 2.44 × 10−5,

bτ =
ln(1/rτ ) − 2/3

ln(1/rτ ) − 1
≃ 1.05,

α is the �ne-stru
ture 
onstant, θW is the weak-mixing angle and rτ = (mτ/mW )2

.
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Notes:

• For an isos
alar medium the |qR| is of the same order of magnitude for any pair of �avors but

νµ − ντ .

• For an isos
alar medium q
(νµ−ντ )
R /q

(νe−νµ)
R ≈ −5× 10−5

.

• For 
ertain regions of a neutron-ri
h medium the value of q
(νe−νs)
R may be
ome vanishingly

small. In this 
ase, the one-loop radiative 
orre
tions must be taken into a

ount.

• For very high energies the qR have to be 
orre
ted for the gauge boson propagators and

strong-intera
tion e�e
ts.

One 
an expe
t |qR| to be either an energy-independent or de
reasing fun
tion for any pair of mixed

neutrino �avors. On the other hand, there are several 
ases of mu
h 
urrent interest when |qI | either

in
reases with energy without bound (mixing between a
tive and sterile neutrino states) or has a

broad or sharp maximum (as for νµ − ντ or νe − νµ mixings, respe
tively).

Numeri
al estimations suggest that for every of these 
ases there is an energy range in whi
h qR and

qI are 
omparable in magnitude. Sin
e qR ∝ ρ and qI ∝ and are dependent upon the 
omposition of

the medium (YA) there may exist some more spe
i�
 situations, when

|qR| ∼ |qI | ∼ |∆|

or even

|qR| ∼ |∆c| and |qI | ∼ |∆s| .

If this is the 
ase, the refra
tion, absorption and mixing be
ome interestingly superimposed.
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7.6 Eigenproblem and mixing matrix in matter.

7.6.1 Eigenvalues.

The matrix H(t) has two 
omplex instantaneous eigenvalues, ε(t) and −ε(t), with
ε = εR + iεI satisfying the 
hara
teristi
 equation

ε2 = (q − q+) (q − q−) ,

where

q± = ∆c ± i∆s = ∆e±2iθ.

The solution is

ε2
R =

1

2

(
ε2

0 − q2
I

)
+

1

2

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s),

εI =
qI (qR − ∆c)

εR
(provided qR 6= ∆c) ,

with

ε0 =
√

∆2 − 2∆cqR + q2
R ≥ |∆s|, sign (εR)

def

= sign(∆) ≡ ζ.

(At that 
hoi
e ε = ∆ for va
uum and ε = ζε0 if qI = 0.)
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In the vi
inity of the MSW resonan
e, qR = qR(t⋆) = ∆c

lim
qR→∆c±0

εR= ∆s

√
max (1 − ∆2

I/∆
2
s, 0),

lim
qR→∆c±0

εI= ±ζ∆I

√
max (1 − ∆2

s/∆
2
I , 0),

where ∆I = qI(t⋆). Therefore the resonan
e value of |εR| (whi
h is inversely proportional to

the neutrino os
illation length in matter) is always smaller than the 
onventional MSW value

|∆s| and vanishes if ∆2
I < ∆2

s (εI remains �nite in this 
ase). In neutrino transition through

the region of resonan
e density ρ = ρ(t⋆), εI undergoes dis
ontinuous jump while εR remains


ontinuous. The 
orresponding 
uts in the q plane are pla
ed outside the 
ir
le |q| ≤ |∆|. If

∆2
I > ∆2

s, the imaginary part of ε vanishes while the real part remains �nite.

A distin
tive feature of the 
hara
teristi
 equation is the existen
e of two mutually 
onjugate

�super-resonan
e� points q± in whi
h ε vanishes giving rise to the total degenera
y of the

levels of the system (impossible in the �standard MSW� solution). Certainly, the behavior of

the system in the vi
inity of these points must be dramati
ally di�erent from the 
onventional

pattern.

The �super-resonan
e� 
onditions are physi
ally realizable for various meaningful

mixing s
enarios.
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Some useful relations:

ε2
R =

2q2
I

(
ε2

0 − ∆2
s

)
√

(ε2
0 − q2

I )
2

+ 4q2
I (ε2

0 − ∆2
s) − ε2

0 + q2
I

,

εI =

√
(ε2

0 − q2
I )

2
+ 4q2

I (ε2
0 − ∆2

s) − ε2
0 + q2

I

2qI (qR − ∆c)
,

∂εR
∂qR

=
∂εI
∂qI

=
qIεI + (qR − ∆c) εR

ε2
R + ε2

I

,

∂εI
∂qR

= −∂εR
∂qI

=
qIεR − (qR − ∆c) εI

ε2
R + ε2

I

,

Re

[
q(t) − ∆c

ε

]
=

(
qR − ∆c

εR

)(
ε2
R + q2

I

ε2
R + ε2

I

)
,

Im

[
q(t) − ∆c

ε

]
=

(
qI
εR

)(
ε2
R − ε2

0 + ∆2
s

ε2
R + ε2

I

)
,

(qR − ∆c)
2

= ε2
0 − ∆2

s.

qR

qI

− |∆  |s

   |∆  |s

∆c

2θ

|∆|
0

Zeros and 
uts of ε in the q plane for ∆c >

0. The 
uts are pla
ed outside the 
ir
le

|q| ≤ |∆| parallel to axis qR = 0. The MSW

resonan
e point is (∆c, 0) and the two �super-

resonan
e� points are (∆c,±∆s).
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7.6.2 Eigenstates.

In order to simplify the solution to the eigenstate problem we'll assume that the phase

traje
tory q = q(t) does not 
ross the points q± at any t. In non-Hermitian quantum

dynami
s one has to 
onsider the two pairs of instantaneous eigenve
tors |Ψ±〉 and |Ψ±〉

whi
h obey the relations

H|Ψ±〉 = ± ε|Ψ±〉 and H†|Ψ±〉 = ± ε∗|Ψ±〉. (25)

and (for q 6= q±) form a 
omplete biorthogonal and biorthonormal set,

〈Ψ±|Ψ±〉 = 1, 〈Ψ±|Ψ∓〉 = 0, |Ψ+〉〈Ψ+| + |Ψ−〉〈Ψ−| = 1.

Therefore, the eigenve
tors are de�ned up to a gauge transformation

|Ψ±〉 7→ eif± |Ψ±〉, |Ψ±〉 7→ e−if∗
± |Ψ±〉,

with arbitrary 
omplex fun
tions f±(t) su
h that Im (f±) vanish as q = 0.a Thus it is

su�
ient to �nd any parti
ular solution of Eqs. (25). Taking into a

ount that H† = H∗

, we

may set |Ψ±〉 = |Ψ∗
±〉 and hen
e the eigenve
tors 
an be found from the identity

H = ε|Ψ+〉〈Ψ∗
+| − ε|Ψ−〉〈Ψ∗

−|.

a

For our aims, the 
lass of the gauge fun
tions may be restri
ted without loss of generality by the 
ondition

f±|q=0 = 0.
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Setting |Ψ±〉 = (v±,±v∓)
T

we arrive at the equations

v2
± =

ε± (q − ∆c)

2ε
, v+v− =

∆s

2ε
,

a parti
ular solution of whi
h 
an be written as

v+=

√∣∣∣∣
ε+ q − ∆c

2ε

∣∣∣∣ e
i(ϕ−ψ)/2,

v−= ζ

√∣∣∣∣
ε− q + ∆c

2ε

∣∣∣∣ e
i(−ϕ−ψ)/2.

where

ϕ = arg(ε+ q − ∆c) = − arg(ε− q + ∆c) = arctan

(
qI
εR

)
,

ψ = arg(ε) = arctan

(
εI
εR

)
.

We have �xed the remaining gauge ambiguity by a 
omparison with the va
uum 
ase.
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7.6.3 Mixing angle in matter.

It may be sometimes useful to de�ne the 
omplex mixing angle in matter Θ = ΘR + iΘI by the

relations

sinΘ = v+ and cosΘ = v−

or, equivalently,

sin 2Θ =
∆s

ε
, cos 2Θ =

∆c − q
ε

,

The real and imaginary parts of Θ are found to be

Re(Θ)≡ ΘR =
1

2
arctan

[
(qI −∆s) εR − (qR −∆c) εI

(qR −∆c) εR + (qI −∆s) εI

]
,

Im(Θ)≡ ΘI =
1

4
ln

[
ε2

R + ε2
I

(qR −∆c)2 + (qI −∆s)2

]
.

cosΘ= cosΘR coshΘI − i sinΘR sinhΘI ,

sinΘ= sinΘR coshΘI + i cosΘR sinhΘI .

Having regard to the pres
ription for the sign of εR, one 
an verify that Θ = θ if q = 0 (va
uum


ase) and Θ = 0 if ∆s = 0 (no mixing or m2
1 = m2

2). It is also 
lear that Θ be
omes the standard

MSW mixing angle with Im(Θ) = 0 when qI = 0 (Λα = Λβ).
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7.6.4 Mixing matrix in matter.

In order to build up the solution to ME for the

nondegenerated 
ase one has to diagonalize the

Hamiltonian. Generally a non-Hermitian matrix


annot be diagonalized by a single unitary

transformation. But in our simple 
ase this


an be done by a 
omplex orthogonal matrix

(extended mixing matrix in matter)

Uf = U exp(if),

where f = diag (f−, f+) and

U = (|Ψ−〉, |Ψ+〉) =

(
v− v+

−v+ v−

)

=

(
cosΘ sinΘ

− sinΘ cosΘ

)
.

Properties of U:

U
T

HU = diag (−ε, ε),
U

T
U = 1, U|q=0 = V.

From CE it follows that

∂ε

∂q
=

(q −∆c)

ε

and thus

∂v±
∂q

= ±∆2
sv∓

2ε2
.

We therefore have

iUT
U̇ = −Ω

(
0 −i
i 0

)
= −Ωσ

2
,

Ω =
q̇∆s

2ε2
=
i

4

d

dt
ln

(
q − q+

q − q−

)
.

Properties of Uf :

U
T
f HUf = diag (−ε, ε),

U
T
f Uf = 1, Uf |q=0 = V,

iUT
f U̇f = −Ωe−if σ

2
eif − ḟ .
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7.7 Adiabati
 solution.

Formal solution to ME in the most general form:

S̃(t) = Uf (t) exp [−iΦ(t)] Xf (t)UT
f (0). (26)

Here Φ(t) = diag (−Φ(t), Φ(t)) and Φ(t) = ΦR(t) + iΦI(t) is the 
omplex dynami
al phase,

de�ned by

ΦR(t) =

∫ t

0

εR(t′)dt′, ΦI(t) =

∫ t

0

εI(t
′)dt′,

and Xf (t) must satisfy the equation

iẊf (t) =
[
Ω(t)e−if(t)F(t)eif(t) + ḟ(t)

]
Xf (t), Xf (0) = 1,

where

F(t) = eiΦ(t)σ2e
−iΦ(t) =

(
0 −ie−2iΦ(t)

ie2iΦ(t) 0

)
.

It 
an be proved now that the right side of Eq. (26) is gauge-invariant i.e. it does not depend

on the unphysi
al 
omplex phases f±(t). This 
ru
ial fa
t is 
losely related to the absen
e of

the Abelian topologi
al phases in the system under 
onsideration.
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Finally, we 
an put f± = 0 in Eq. (26) and the result is

S̃(t) = U(t) exp [−iΦ(t)] X(t)UT (0), (27a)

iẊ(t) = Ω(t)F(t)X(t), X(0) = 1. (27b)

These equations, being equivalent to the ME, have nevertheless a restri
ted range of pra
ti
al

usage on a

ount of poles and 
uts as well as de
aying and in
reasing exponents in the

�Hamiltonian� ΩF.

7.7.1 Adiabati
 theorem.

The adiabati
 theorem of Hermitian quantum me
hani
s 
an almost straightforwardly be extended to

ME under the requirements:

(a) the potential q is a su�
iently smooth and slow fun
tion of t;

(b) the imaginary part of the dynami
al phase is a bounded fun
tion i.e. limt→∞ |ΦI(t)| is �nite;

(
) the phase traje
tory q = q(t) is pla
ed far from the singularities for any t.

The �rst requirement breaks down for a 
ondensed medium with a sharp boundary or layered

stru
ture (like the Earth). If however the requirement (a) is valid inside ea
h layer (ti, ti+1), the

problem redu
es to Eqs. (27) by applying the rule

S̃(t) ≡ S̃(t, 0) = S̃ (t, tn) . . . S̃ (t2, t1) S̃ (t1, 0),

where S̃ (ti+1, ti) is the time-evolution operator for the i-th layer.
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The requirement (b) alone is not too restri
tive 
onsidering that for many astrophysi
al obje
ts (like

stars, gala
ti
 nu
lei, jets and so on) the density ρ exponentially disappears to the periphery and, on

the other hand, εI → 0 as ρ→ 0. In this instan
e, the fun
tion ΦI(t) must be t independent for

su�
iently large t. But, in the 
ase of a steep density pro�le, the requirements (a) and (b) may be

in
onsistent. The important 
ase of violation of the requirement (
) is the subje
t of a spe
ial study

whi
h is beyond the s
ope of this study.

It is interesting to note in this 
onne
tion that, in the Hermitian 
ase, a general adiabati
 theorem has been

proved without the traditional gap 
ondition

a

.

a

J. E. Avron and A. Elgart, Commun. Math. Phys. 203 (1999) 445�467.
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7.7.2 The solution.

Presume that all ne
essary 
onditions do hold for 0 ≤ t ≤ T . Then, in the adiabati
 limit, we 
an put

Ω = 0 in Eq. (27b). Therefore X = 1 and Eq. (27a) yields

S̃αα(t)= v+(0)v+(t)e−iΦ(t) + v−(0)v−(t)eiΦ(t),

S̃αβ(t)= v−(0)v+(t)e−iΦ(t) − v+(0)v−(t)eiΦ(t),

S̃βα(t)= v+(0)v−(t)e−iΦ(t) − v−(0)v+(t)eiΦ(t),

S̃ββ(t)= v−(0)v−(t)e−iΦ(t) + v+(0)v+(t)eiΦ(t),

Taking into a

ount Eq. (24) we obtain the survival and transition probabilities:

Pαα(t) = A(t)
{[
I+

+ (t)eΦI(t) + I−− (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t)− ϕ+(t)]

}
,

Pαβ(t) = A(t)
{[
I−+ (t)eΦI(t) − I+

−(t)e−ΦI(t)
]2

+ I2(t) sin2 [ΦR(t)− ϕ−(t)]
}
,

Pβα(t) = A(t)
{[
I+
−(t)eΦI(t) − I−+ (t)e−ΦI(t)

]2
+ I2(t) sin2 [ΦR(t) + ϕ−(t)]

}
,

Pββ(t) = A(t)
{[
I−− (t)eΦI (t) + I+

+ (t)e−ΦI(t)
]2 − I2(t) sin2 [ΦR(t) + ϕ+(t)]

}
,

(28)

where we have denoted for 
ompa
tness (ς, ς ′ = ±)

Iς′

ς (t) = |vς(0)vς′ (t)|, ϕ±(t) =
ϕ(0) ± ϕ(t)

2
, I2(t) = 4I+

+ (t)I−− (t) = 4I−+ (t)I+
−(t) =

∆2
s

|ε(0)ε(t)|
.
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7.7.3 Limiting 
ases.

In the event that the 
onditions

∣∣∣∣
1

Λβ(t)
− 1

Λα(t)

∣∣∣∣ ≪ 4ε0(t) and t ≪ min [Λα(t), Λβ(t)]

are satis�ed for any t ∈ [0, T ], the formulas (28) redu
e to the standard MSW adiabati


solution

Pαα(t)= Pββ(t) =
1

2
[1 + J(t)] − I2

0 (t) sin2 [Φ0(t)],

Pαβ(t)= Pβα(t) =
1

2
[1 − J(t)] + I2

0 (t) sin2 [Φ0(t)],





(MSW)

where

J(t) =
∆2 − ∆c [qR(0) + qR(t)] + qR(0)qR(t)

ε0(0)ε0(t)
,

I2
0 (t) =

∆2
s

ε0(0)ε0(t)
, Φ0(t) =

∫ t

0

ε0(t′)dt′.

Needless to say either of the above 
onditions or both may be violated for su�
iently high

neutrino energies and/or for thi
k media, resulting in radi
al di�eren
es between the two

solutions. These di�eren
es are of obvious interest to high-energy neutrino astrophysi
s.
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It is perhaps even more instru
tive to examine the distin
tions between the general adiabati


solution (28) and its �
lassi
al limit�

Pαα(t)= exp

[
−
∫ t

0

dt′

Λα(t′)

]
, Pαβ(t) = 0,

Pββ(t)= exp

[
−
∫ t

0

dt′

Λβ(t′)

]
, Pβα(t) = 0,





(∆s = 0)

whi
h takes pla
e either in the absen
e of mixing or for m2
1 = m2

2.

Note:

Considering that Ω ∝ ∆s, the 
lassi
al limit is the exa
t solution to the master equation (for

∆s = 0). Therefore it 
an be derived dire
tly from Eq. (23). To make 
ertain that the

adiabati
 solution has 
orre
t 
lassi
al limit, the following relations are useful:

lim
∆s→0

ε(t) = ζζR [q(t) − ∆c]

and

lim
∆s→0

|v±( t)|2 =
1

2
(ζζR ± 1),

where

ζR = sign [qR(t) − ∆c].
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7.8 Matter of 
onstant density and 
omposition.

In this simple 
ase, the adiabati
 approximation be
omes exa
t and thus free from the

above-mentioned 
on
eptual di�
ulties. For de�niteness sake we assume Λα < Λβ (and thus

qI < 0) from here. The opposite 
ase 
an be 
onsidered in a similar way. Let's denote

1

Λ±

=
1

2

(
1

Λα
+

1

Λβ

)
± ξ

2

(
1

Λα
− 1

Λβ

)
,

I2
± =

1

4

(
1 +

ε2
0 + q2

I − ∆2
s

ε2
R + ε2

I

)
± ξ

2

(
ε2
R + q2

I

ε2
R + ε2

I

)
,

L =
π

|εR| and ξ =

∣∣∣∣
qR − ∆c

εR

∣∣∣∣.

As is easy to see,

I±
± =




I± if sign (qR − ∆c) = +ζ,

I∓ if sign (qR − ∆c) = −ζ,

I−
+ = I+

− =
√
I+I− =

I

2
=

∣∣∣∣
∆s

2ε

∣∣∣∣

and sign(ϕ) = −ζ.
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By applying the above identities, the neutrino os
illation probabilities 
an be written as

Pαα(t)=
(
I+e

−t/2Λ+ + I−e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
+ |ϕ|

)
,

Pββ(t)=
(
I−e

−t/2Λ+ + I+e
−t/2Λ−

)2

− I2e−t/Λ sin2

(
πt

L
− |ϕ|

)
,

Pαβ(t)= Pβα(t) =
1

4
I2
(
e−t/2Λ− − e−t/2Λ+

)2

+ I2e−t/Λ sin2

(
πt

L

)
.

The di�eren
e between the survival probabilities for να and νβ is

Pαα(t) − Pββ(t) = −ζRe

(
q − ∆c

ε

)(
e−t/2Λ− − e−t/2Λ+

)

+I2e−t/Λ sinϕ sin

(
2πt

L

)
.
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7.8.1 Case |q| & |∆s|.

Let's examine the 
ase when Λ+ and Λ− are vastly di�erent in magnitude. This will be true

when Λβ ≫ Λα and the fa
tor ξ is not too small. The se
ond 
ondition holds if qR is away

from the MSW resonan
e value ∆c and the following dimensionless parameter

κ =
∆s

|q| ≈ 0.033 × sin 2θ

(
∆m2

10−3

eV

2

)(
100 GeV

Eν

)(
V0

|q|

)

is su�
iently small. In fa
t we assume |κ| . 1 and impose no spe
i�
 restri
tion for the ratio

qR/qI . This spans several possibilities:

⋆ small ∆m2

,

⋆ small mixing angle,

⋆ high energy,

⋆ high matter density.

The last two possibilities are of spe
ial interest be
ause the inequality |κ| . 1 may be ful�lled

for a wide range of the mixing parameters ∆m2

and θ by 
hanging Eν and/or ρ. In other

words, this 
ondition is by no means arti�
ial or too restri
tive.
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After elementary while a bit tedious 
al
ulations we obtain

ξ = 1 − 1

2
κ

2 + O
(
κ

3
)
, I2 = κ

2 + O
(
κ

3
)
,

I+ = 1 + O
(
κ

2
)
, I− =

1

4
κ

2 + O
(
κ

3
)
;

Λ ≈ 2Λα, Λ+ ≈
(

1 +
κ

2

4

)
Λα ≈ Λα, Λ− ≈

(
4

κ2

)
Λα ≫ Λα.

Due to the wide spread among the length/time s
ales Λ±, Λ and L as well as among the

amplitudes I± and I, the regimes of neutrino os
illations are quite diverse for di�erent ranges

of variable t.

With referen
e to Figures in pp. 130�133, one 
an see a regular gradation from slow (for

t . Λµ) to very fast (for t & Λµ) neutrino os
illations followed by the asymptoti


nonos
illatory behavior:

Pµµ(t) ≃ κ
4

16
e−t/Λ− ,

Pss(t) ≃ e−t/Λ− ,

Pµs(t) = Psµ(t) ≃ κ
2

4
e−t/Λ− .
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 250 GeV, ρ = 1 g/
m

3

).
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 1000 GeV, ρ = 0.2 g/
m

3

).
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 100 TeV, ρ = 10−3

g/
m

3

).
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Survival and transition probabilities for νµ ↔ νs os
illations (Eν = 100 TeV, ρ = 3× 10−4

g/
m

3

).
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The me
hanism under dis
ussion may be released in the Thorne�




Zytkow obje
ts (T




ZO) � binaries

with a neutron star submerged into a red supergiant 
ore. Figure shows an artisti
 view of how a

T




ZO 
ould be formed.

[See, e.g., URLs: 〈 http://astro�shki.net/universe/hv-2112-neveroyatnyj-obekt-torna-zhitkov/ 〉 and

〈 http://www.de
ifrandoastronomia.
om.br/2017/01/uma-estrela-dentro-de-outra-
onhe
a-hv.html〉.℄

The very bright red star HV2112 in the Small Magellani
 Cloud (see next slide) 
ould be a massive

supergiant-like star with a degenerate neutron 
ore (T




ZO). With its luminosity of over 105L⊙, it


ould also be a super asymptoti
 giant bran
h star (SAGB), a star with an oxygen/neon 
ore

supported by ele
tron degenera
y and undergoing thermal pulses with third dredge up.
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Both T




ZO and SAGB stars are expe
ted to be rare. Cal
ulations performed by Ch. A. Tout et al.

a

indi
ate that HV2112 is likely a genuine T




ZO. But a mu
h more likely explanation is that HV2112 is

an intermediate mass (∼ 5M⊙) AGB star; a new T




ZO 
andidate (HV11417) is re
ently suggested.

b

a

Ch. A. Tout, A. N.




Zytkow, R. P. Chur
h, & H. H. B. Lau, �HV2112, a Thorne�




Zytkow obje
t or a super

asymptoti
 giant bran
h star�, Mon. Not. Roy. Astron. So
. 445 (2014) L36�L40, arXiv:1406.6064 [astro-ph.HE℄.

b

E. R. Beasor, B. Davies, I. Cabrera-Ziri, & G. Hurst , �A 
riti
al re-evaluation of the Thorne�




Zytkow obje
t


andidate HV 2112�, arXiv:1806.07399 [astro-ph.SR℄.
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7.8.2 Degenerate 
ase.

The 
onsideration must be 
ompleted for the 
ase of degenera
y. Due to the 
ondition

qI < 0, the density and 
omposition of the �degenerate environment� are �ne-tuned in su
h a

way that

q = q−ζ = ∆c − i |∆s|.

The simplest way is in 
oming ba
k to the master equation. Indeed, in the limit of q = q−ζ ,

the Hamiltonian redu
es to

H = |∆s|
(

−i ζ

ζ i

)
≡ |∆s| hζ .

Considering that h2
ζ = 0, we promptly arrive at the solution of ME:

S̃(t) = 1 − it |∆s| hζ

and thus

Pαα(t) = (1 − |∆s| t)2
e−t/Λ,

Pββ(t) = (1 + |∆s| t)2
e−t/Λ,

Pαβ(t) = Pβα(t) = (∆st)
2
e−t/Λ.
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Sin
e 1/Λβ = 1/Λα − 4 |∆s|, the ne
essary 
ondition for the total degeneration is

4Λα |∆s| ≤ 1

and thus

1/Λ = 1/Λα − 2 |∆s| ≥ 2 |∆s|.

The equality only o

urs when νβ is sterile.

The degenerate solution must be 
ompared with the standard MSW solution

Pαα(t) = Pss(t) =
1

2
[1 + cos (2∆st)],

Pαs(t) = Psα(t) =
1

2
[1 − cos (2∆st)],





(MSW)

and with the 
lassi
al penetration 
oe�
ient

exp (−t/Λα)

(with 1/Λα numeri
ally equal to 4 |∆s|) relevant to the transport of unmixed a
tive neutrinos

through the same environment.
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Survival and transition probabilities for να ↔ νs os
illations in the 
ase of degenera
y (q = q−ζ). The

standard MSW probabilities (dotted and dash-dotted 
urves) together with the penetration


oe�
ient for unmixed να (dashed 
urve) are also shown.
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7.9 Con
lusions.

We have 
onsidered, on the basis of the MSW evolution equation with 
omplex indi
es of

refra
tion, the 
onjoint e�e
ts of neutrino mixing, refra
tion and absorption on high-energy

neutrino propagation through matter. The adiabati
 solution with 
orre
t asymptoti
s in the

standard MSW and 
lassi
al limits has been derived. In the general 
ase the adiabati


behavior is very di�erent from the 
onventional limiting 
ases.

A noteworthy example is given by the a
tive-to-sterile neutrino mixing. It has been

demonstrated that, under proper 
onditions, the survival probability of a
tive neutrinos

propagating through a very thi
k medium of 
onstant density may be
ome many orders of

magnitude larger than it would be in the absen
e of mixing. The quantitative 
hara
teristi
s

of this phenomenon are highly responsive to 
hanges in density and 
omposition of the

medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysi
al sour
es of high-energy neutrinos, the e�e
t

may open a new window for observational neutrino astrophysi
s.
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