Neutrino oscillations
in matter
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6 Neutrino refraction.

It has been noted by Wolfenstein® that neutrino oscillations in a medium are affected by
interactions even if the thickness of the medium is negligible in comparison with the neutrino
mean free path.

Let us forget for the moment about the inelastic collisions and consider the simplest case of a
ultrarelativistic neutrino which moves in an external (effective) potential W formed by the
matter background. If the neutrino momentum in vacuum was p then its energy was

~ p = |p|. When the neutrino enters into the medium, its energy becomes £ = p + W. Let
us now introduce the index of refraction n = p/E which is a positive value in the absence of
inelastic collisions. Therefore

W=(1-n)E>~(1-n)p. (18)
In the last step, we took into account that neutrino interaction with matter is very weak,

|W| < E, and thus E ~ p is a good approximation.

The natural generalization of Eq. (13) for the time evolution of neutrino flavor states in
matter then follows from this simple consideration and the quantum-mechanical
correspondence principle.

2. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
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This is the famous Wolfenstein equation:

d
D), = [VHGT 4 WD) (1), (19)
where
W(t) =diag (1 —ny,,1—ny,,1—n,_,...)p (20)

is the interaction Hamiltonian.

It will be useful for the following to introduce the time-evolution operator for the flavor states

defined by
v(1), = SO(0) .

Taking into account that |v(t)) , must satisfy Eq. (19) for any initial condition

f
v(t = O)>f = |1/(O)>f, the Wolfenstein equation can be immediately rewritten in terms of

the evolution operator:
iS(t) = [VHoV' + W(t)] S(t), S(0) =1. (21)

This equation (or its equivalent (19)) cannot be solved analytically in the general case of a
medium with a varying (along the neutrino pass) density. But for a medium with a slowly
(adiabatically) varying density distribution the approximate solution can be obtained by a
diagonalization of the effective Hamiltonian. Below we will consider this method for a rather
general 2-flavor case but now let us illustrate (without derivation) the simplest situation with
a matter of constant density.

99



In the 2-flavor case, the transition probability is given by the formula very similar to that for vacuum:

P.o/ (L) = %sin2 20m [1 — cos (QLW—L)} :

Lm = Ly [1 = 25 (Ly/Lo) cos 20 + (L/Lo)?] ~'/*.

The L, is called the oscillation length in matter and is defined through the following quantities:

ArE V21 A AN (25 g/cm®
L,=Lss=—-, Lo=——"""~2 ) =S )
2T Am2 T GpNaZp Fo (22) ( p

: 2 2 2 2 2
/<;ZS|gn(m3—m2), Am”® = |m3 — m3|.

The parameter 6, is called the mixing angle in matter and is given by

L
in 20, = sin 26 ,
S1n S1n (LV )

cos 20, = (60829 — Iié—;) (i’:)

The solution for antineutrinos is the same but with the replacement

K H—— —K.

The closeness of the value of Lo to the Earth’s diameter is even more surprising than that for L,.

The matter effects are therefore important for atmospheric neutrinos.
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7 Propagation of high-energy mixed neutrinos through
matter.

“The matter doesn't matter”

Lincoln Wolfenstein, lecture given at 28th
SLAC Summer Institute on Particle Physics
“Neutrinos from the Lab, the Sun, and the
Cosmos”, Stanford, CA, Aug. 14-25, 2000.

When neutrinos propagate through vacuum there is a phase change exp (—z’m?t/Qp,,). For two
mixed flavors there is a resulting oscillation with length

;o _AE, o ( E, ) 0.002 eV?
T Am2 T TP \10 Gev Am2 )

In matter there is an additional phase change due to refraction associated with forward scattering
exp [ipy (Ren — 1)t].

The characteristic length (for a normal medium) is

V2A A 2.5 g/cm2
e A p, (A (228
GrNaZp 27 0

It is generally believed that the imaginary part of the index of refraction n which describes the
neutrino absorption due to inelastic interactions does not affect the oscillation probabilities or at the
least inelastic interactions can be someway decoupled from oscillations.
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The conventional arguments are
e Ren—1x Gr while Imn o< G%;
e Only An may affect the oscillations and Almn is all the more negligible.

It will be shown that these arguments do not work for sufficiently high neutrino energies and/or for
thick media = in general absorption cannot be decoupled from refraction and mixing.® By using
another cant phrase of Wolfenstein, one can say that

“In some circumstances the matter could matter.”

Let

fv.,a(0) be the amplitude for the v, zero-angle scattering from particle A of the matter
background (A =e,p,n,...),

p(t) be the matter density (in g/cm?),
Ya(t) be the number of particles A per amu in the point ¢ of the medium, and

No = 6.02214199 x 10** cm™° be the reference particle number density (numerically equal to
Avogadro’s number).

Then the index of refraction of v, for small |n — 1] (for normal media |n — 1| << 1) is given by
2N
na(t) = 14 220e(0) ZYA ) froa(0),

where p, is the neutrino momentum.

apyImn o< ot (p,) grows fast with energy while p, (Ren — 1) is a constant or decreasing function of E,, .
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Since the amplitude f,_ 4(0) is in general a complex number, the index of refraction is also complex.
Its real part is responsible for neutrino refraction while the imaginary part — for absorption. From the
optical theorem of quantum mechanics we have

Im (£, 4(0)] = 22024 (pu).

This implies that

potm o (1] = 5 Nop(t) Y V(1o (b) = s,

where

B 1 A (pos t)

- OXR (puyt)  p(t)

is the mean free path [in cm] of v, in the point ¢ of the medium. Since the neutrino momentum, p,,
is an extrinsic variable in Eq. (22), we will sometimes omit this argument to simplify formulas.

Ao (pv,t)

The generalized MSW equation for the time-evolution operator
S(1) <Saa<t> Saﬁ(t)>
Spa(t) Sps(t)

of two mixed stable neutrino flavors v, and vg propagating through an absorbing medium can be
written as

i%su) = [VH, VT + W()] (1), (S(0)=1). (22)
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Here

V= cosf sind is the vacuum mixing matrix (0 < 0 < 7/2),
—ginf cosf
Eiy 0 : o :
Hy= is the vacuum Hamiltonian for v mass eigenstates,
0 FEs

Ei=+/p2 +m? ~p, +m:/2p, is the energy of the v; eigenstate,

W (t)= —p, nall) =1 ¥ is the interaction Hamiltonian.
0 ng(t) —1

It is useful to transform MSW equation into the one with a traceless Hamiltonian. For this
purpose we define the matrix

~

S(t) = exp {% /Ot Tr[Ho + W (t')] dt’} S(t).

The master equation (ME) for this matrix then is

i%g(t) — H(¢)S(¢), S(0)=1. (23)
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The effective Hamiltonian is defined by

Hi) - (q(t) A, A, )

As _Q(t) + Ac
m3 — m?
A.=Acos20, A,=Asin20, A= %,
Pv
, 1
q(t) = ar(t) +1iq1(t) = 5pu [np(t) — na(t)].

The Hamiltonian for antineutrinos is of the same form as H(t) but

Re[f7,4(0)] = —Re[f,,4(0)] and Im[fz, a(0)] # Im[f,, a(0)].

The neutrino oscillation probabilities are

| (24)

~

Pva(0) = vor (t)] = Pao (1) = ‘Sa’a(t)‘Q = A(t) |Sara(t)

where

Alt) [ /t dt’] 1 1[ L1 ]
=exp |— , ———~ = = :
o A)] A) 2 [Aa(t)  Ap(t)
Owing to the complex potential ¢, the Hamiltonian H(%) is non-Hermitian and the new
evolution operator S(t) is nonunitary. As a result, there are no conventional relations between

P.or(1).
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Since

qr(t) = i [ Aﬁl(t) a /lal(t)]7

the matrix H(¢) becomes Hermitian when A, = Ag. If this is the case at any ¢, the ME
reduces to the standard MSW equation and inelastic scattering results in the common
exponential attenuation of the probabilities. From here, we shall consider the more general
and more interesting case, when A, # Ag.

Vo — Vg

This is the extreme example. Since Ay = oo, we have A =24, and q; = —1/4A,. So q; # 0
at any energy. Even without solving the evolution equation, one can expect the penetrability
of active neutrinos to be essentially modified in this case because, roughly speaking, they
spend a certain part of life in the sterile state. In other words, sterile neutrinos “tow” their
active companions through the medium as a tugboat. On the other hand, the active neutrinos
“retard” the sterile ones, like a bulky barge retards its tugboat. As a result, the sterile
neutrinos undergo some absorption.
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Ve,u — Vr

. . CC CC . .
Essentially at all energies, o7~ v > o~y This is because of large value of the 7 lepton
mass, m,, which leads to several consequences:

1. high neutrino energy threshold for 7 production;
2. sharp shrinkage of the phase spaces for CC v, N reactions;

3. kinematic correction factors (oc m?2) to the nucleon structure functions (the
corresponding structures are negligible for e production and small for p production).

The neutral current contributions are canceled out from ¢;. Thus, in the context of the
master equation, v, can be treated as (almost) sterile within the energy range for which
o5C v > 0SSy (see Figures in pp.109-110).

Ve,u

ve _va

A similar situation, while in quite a different and narrow energy range, holds in the case of
mixing of 7. with some other flavor. This is a particular case for a normal C' asymmetric
medium, because of the W boson resonance formed in the neighborhood of

E'® = m#,/2m. ~ 6.33 PeV through the reactions

vee. — W™ — hadrons and T.em - W~ =T/ ({=e,u,T1).

Let’s remind that 03", ~ 250 03"y just at the resonance peak.
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According to Albright and Jarlskog?®

CC 2
dgu, v GFmNEl/

dedy s

(A1Fy + AgFy + AsFs+ Ay Fy + AsFs ),

where F; = F;(x,(Q?) are the nucleon structure functions and A; are the kinematic factors
i=1,...,5). These factors were calculated by many authors® and the most accurate
formulas were given by Paschos and Yu:

m2y muy m? Yy m?y
A =2+ — A =1 —y— XLy — —L AL = (1__>_ l
R oy Yoo, T arz BT T ) T dmyEy
m? m? m?
A= T M g mi
1 2myE, (xy+ 2mNE,/>’ > 2myE,

The contributions proportional to m? must vanish as F, > m,. However they remain
surprisingly important even at very high energies.

a3C. H. Albright and C. Jarlskog, Nucl. Phys. B 84 (1975) 467-492; see also I. Ju, Phys. Rev. D 8 (1973)
3103-3109 and V. D. Barger et al., Phys. Rev. D 16 (1977) 2141-2157.

bSee previous footnote and also the more recent papers: S. Dutta, R. Gandhi, and B. Mukhopadhyaya, Eur.
Phys. J. C 18 (2000) 405-416, hep-ph/9905475; N. I. Starkov, J. Phys. G 27 (2001) L81-L85; E. A. Paschos
and J. Y. Yu, Phys. Rev. D 65 (2002) 033002, hep-ph/0107261.
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7.5 Indices of refraction.

For E, < min (m3; ;/2ma) and for an electroneutral nonpolarized cold medium, the g is

energy independent. In the leading orders of the standard electroweak theory it is

Jr = %

where

« is the fine-structure constant, 0y is the weak-mixing angle and 7, = (m,/mw)°.

(
LVoY,p foro =eand = por,
sV (Y, +0:Ya) p for o= puand 5= 7,
Vo (Y, —3Yn)p for « = e and = s,
it for o= 1 or 7 and 1= &

Vo = V2G Ny ~ 7.63 x 10714 eV

2
(LO — T 1,62 x 10% km ~ D@),
Vo

_ 3ar; In(1/r;) — 1]

. ~ 2.44 x 107°,
A7 sin? Oy
b — n(l/rr) /3:1.05,
In(1/r;)—1

2
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Notes:
e For an isoscalar medium the |gr| is of the same order of magnitude for any pair of flavors but
V/“L - V’T'

e For an isoscalar medium ql(;“_VT)/ql(;e_V“> ~ —5x 107°.

e For certain regions of a neutron-rich medium the value of qRVe_VS) may become vanishingly
small. In this case, the one-loop radiative corrections must be taken into account,

e For very high energies the gr have to be corrected for the gauge boson propagators and
strong-interaction effects.

One can expect |gr| to be either an energy-independent or decreasing function for any pair of mixed
neutrino flavors. On the other hand, there are several cases of much current interest when |g;| either
increases with energy without bound (mixing between active and sterile neutrino states) or has a
broad or sharp maximum (as for v, — v, or U. — U,, mixings, respectively).

Numerical estimations suggest that for every of these cases there is an energy range in which ¢r and
qr are comparable in magnitude. Since gr o< p and q; o< and are dependent upon the composition of
the medium (Y4) there may exist some more specific situations, when

\qr| ~ |qr| ~ |A|

or even
lqr| ~ |Ac| and  gr| ~ [Ag].

If this is the case, the refraction, absorption and mixing become interestingly superimposed.

112



7.6.1 Eigenvalues.

The matrix H(¢) has two complex instantaneous eigenvalues, £(¢) and —&(t), with

e = ep + ey satisfying the characteristic equation

where

The solution is

e =(q—q4)(g—q-),

e = A, £iA, = AeT?,

r

Er =

1
9
q1 (qr — A.)

€ER

1 2
> (B -a) + 5/ - D) +4¢2 (3 - A2),

(provided dR 7& Ac) )

with

g0 = \/A2 —2Acqr + g% > |As], sign (eg) a sign(A) = (.

(At that choice € = A for vacuum and € = (eq if ¢ =0.)
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In the vicinity of the MSW resonance, qr = qr(ts) = A,

. _ . 2 2
lim | cp= Ay/max (1 — A3/A2,0),

: _ _ 2 2
dim | er= £(A 7/ max (1 - A2/A2,0),

where A; = q;(t,). Therefore the resonance value of |eg| (which is inversely proportional to
the neutrino oscillation length in matter) is always smaller than the conventional MSW value
|Ag| and vanishes if A% < A? (g7 remains finite in this case). In neutrino transition through
the region of resonance density p = p(t,), €7 undergoes discontinuous jump while ez remains
continuous. The corresponding cuts in the ¢ plane are placed outside the circle |g| < |A|. If
A% > A? the imaginary part of & vanishes while the real part remains finite.

A distinctive feature of the characteristic equation is the existence of two mutually conjugate
“super-resonance’ points ¢+ in which ¢ vanishes giving rise to the total degeneracy of the
levels of the system (impossible in the “standard MSW" solution). Certainly, the behavior of
the system in the vicinity of these points must be dramatically different from the conventional
pattern.

The “super-resonance” conditions are physically realizable for various meaningful
mixing scenarios.
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Some useful relations:

2q7 (e — A?)

2
et —q7)" +4q7 (6§ — A2) —e§ + ¢F

2
V(€3 —@2)? + 4¢3 (3 — A2) — e} + @2

2q1 (qr — A.)

2
€R —
Vo
Er =
863
dqr
Per _
dqr
Re | 4)
i [4)

- oq
[ _Ac_ . QR_AC
e | ER

-A] (QI) (5%—€8+A§)
5 ER €% 4 €3 ’

an 8%4—8%

Oer _ qer (gr — Ac)er

Y

Oer _ qier — (qr — Ac)er

2 2
Ep T €7

?

2 2
€R+qI)
2 2 )
Ep T €7

(qr — AC)2 = 5(2) — Ag.

q
//// \\\\
// \\
// |AS| i /‘
/ - \
~
/ P \\
// /// \
| -\ 26 L _
T J >
| 0 \\\\ Ac/’ qR
\ > /
\\ |A|\\\ //
—|As |} .
N S o
AN /
AN 7/
AN e
~N e
\\ //

Zeros and cuts of ¢ in the ¢ plane for A, >
0. The cuts are placed outside the circle
lq| < |A] parallel to axis gg = 0. The MSW
resonance point is (A, 0) and the two “super-
resonance’ points are (A¢, +A;).

115



7.6.2 Eigenstates.

In order to simplify the solution to the eigenstate problem we’ll assume that the phase
trajectory ¢ = ¢(t) does not cross the points g+ at any ¢. In non-Hermitian quantum
dynamics one has to consider the two pairs of instantaneous eigenvectors |¥..) and |[¥ )
which obey the relations

H|U,) = +e|0y) and HIUL) = £*0,). (25)
and (for ¢ # q+) form a complete biorthogonal and biorthonormal set,
(TilPp) =1, (P|¥z) =0, [V ) T4+ P )(F_|=1.
Therefore, the eigenvectors are defined up to a gauge transformation
Ty) s L), [Ty e e R,

with arbitrary complex functions fi(¢) such that Im (fL) vanish as ¢ = 0.2 Thus it is
sufficient to find any particular solution of Eqgs. (25). Taking into account that H' = H*, we
may set W) = |¥1) and hence the eigenvectors can be found from the identity

H = e, ) ()] — e[ 0_) (",

aFor our aims, the class of the gauge functions may be restricted without loss of generality by the condition
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Setting |V1) = (v, iqu)T we arrive at the equations

gi(q_Ac) VLU :ﬁ
2¢ D P

a particular solution of which can be written as

v] =

e+q— A,
2e

Y

where

p =arg(e +q— A.) = —arg(e — ¢+ A.) = arctan (q_1>’
€R

Y = arg(e) = arctan (€—I>

€R

We have fixed the remaining gauge ambiguity by a comparison with the vacuum case.
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7.6.3 Mixing angle in matter.

It may be sometimes useful to define the complex mixing angle in matter ©® = Or + i@ by the
relations

sin® =v; and cos® = v_

or, equivalently,

sin 260 = ﬁ, cos 20 = Ac—q,
£ £

The real and imaginary parts of © are found to be
(g1 — As)er — (gr — Ac) €x
(gr — Acd)er+ (g1 — As)er |’
In [ cht el ] :

(qr — Ac)” + (gr — As)”

Re(©)= Or = L arctan [

Im(©)= 07 =

2
1
1

cos ©@= cos O cosh ©; — 1sin O sinh Oy,
sin ©®= sin @ cosh @1 + i cos O sinh O7.

Having regard to the prescription for the sign of er, one can verify that ©® = 0 if ¢ = 0 (vacuum

case) and © = 0 if A; = 0 (no mixing or m? = m3). It is also clear that © becomes the standard

MSW mixing angle with Im(©) = 0 when qr =0 (Ao = Ap).
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7.6.4 Mixing matrix in matter.

In order to build up the solution to ME for the
nondegenerated case one has to diagonalize the
Hamiltonian. Generally a non-Hermitian matrix
cannot be diagonalized by a single unitary
transformation. But in our simple case this
can be done by a complex orthogonal matrix
(extended mixing matrix in matter)

U; = Uexp(if),
where f = diag (f—, f+) and

U=<|w>,|w+>>=<“ “*)

— U+ vV_
[ cos® sin®
—sin® cos®

Properties of U:

U HU = diag(—¢,¢),
Uu'u=1, U|_,=V.

From CE it follows that

de _ (¢—A)
oq €

and thus
vt — iszﬂF
Oq 2e?

We therefore have

UTU =-0Q 0 = = —90'2,
10
gAs i d q—q+
Q= =-——1 .
2e? 4dtn<q—q)

Properties of Uy:

U;HU; = diag (—¢,¢),
U?Uf — 17 Uf|q:() — V7

’iU?Uf = —Qe_if0'2eif —f.
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Formal solution to ME in the most general form:

~

S(t) = Uy (t) exp [~i(1)] X ; (1) UF (0). (26)

Here ®(t) = diag (—®(t),®(t)) and @(t) = Pg(t) + i®;(t) is the complex dynamical phase,
defined by

t t
ort) = [ en(t)ts @i(t)= [ et)ar.
0 0
and X (t) must satisfy the equation
iX,(t) = [Q(t)e—if@)F(t)eif(t) +f<t)} X (1), X;(0)=1,

where

F(t) _ eiq)(t)dge_iq)(t) _ 0 —je—2i2(1) |
ie2i¢(t) 0

It can be proved now that the right side of Eq. (26) is gauge-invariant i.e. it does not depend
on the unphysical complex phases f(t). This crucial fact is closely related to the absence of
the Abelian topological phases in the system under consideration.
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Finally, we can put fi = 0 in Eq. (26) and the result is

~

S(t) = U(t) exp [—i®(£)] X (t)UT(0), (27a)
iX(t) = QF()X(t), X(0)=1. (27b)

These equations, being equivalent to the ME, have nevertheless a restricted range of practical
usage on account of poles and cuts as well as decaying and increasing exponents in the
“Hamiltonian” QF.

7.7.1 Adiabatic theorem.

The adiabatic theorem of Hermitian quantum mechanics can almost straightforwardly be extended to
ME under the requirements:

(a) the potential g is a sufficiently smooth and slow function of ¢;
(b) the imaginary part of the dynamical phase is a bounded function i.e. lim;_,o |@7 ()| is finite;
(c) the phase trajectory ¢ = q(t) is placed far from the singularities for any t¢.

The first requirement breaks down for a condensed medium with a sharp boundary or layered
structure (like the Earth). If however the requirement (a) is valid inside each layer (¢;,%;11), the
problem reduces to Eqs. (27) by applying the rule

S(t)=S(t,0) =S (t,tn)...S (t2,11) S (1, 0),

where S (ti+1,t:) is the time-evolution operator for the i-th layer.
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p cm

The requirement (b) alone is not too restrictive considering that for many astrophysical objects (like
stars, galactic nuclei, jets and so on) the density p exponentially disappears to the periphery and, on
the other hand, e — 0 as p — 0. In this instance, the function @;(t) must be ¢ independent for
sufficiently large t. But, in the case of a steep density profile, the requirements (a) and (b) may be
inconsistent. The important case of violation of the requirement (c) is the subject of a special study
which is beyond the scope of this study.

It is interesting to note in this connection that, in the Hermitian case, a general adiabatic theorem has been

proved without the traditional gap condition?.

2J. E. Avron and A. Elgart, Commun. Math. Phys. 203 (1999) 445-467.
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7.7.2 The solution.

Presume that all necessary conditions do hold for 0 < ¢ < T'. Then, in the adiabatic limit, we can put
Q2 =0 in Eq. (27b). Therefore X = 1 and Eq. (27a) yields

Sea ()= v (0)vy (£)e 20 4 y_(0)v_(t)e'?®),
Sus ()= v_(0)vg (e~ ® — vy (0)v_ (£)e®®)
gﬁa(t)z v (0)v_ (£)e P — oy (0)vy (£)e"P®),
S (t)=v_(0)v_ ()™ ®® + v (0)vy (t)e'®®),

Taking into account Eq. (24) we obtain the survival and transition probabilities:

Paa(t) = A(t) { IF ()™ + 1~ (t)e 1] L P)sin® [Br(t) — o4 (D] L,

Pag(t) = A(t) { 17 (e — It (t)e "1 M] " (1) sin® [Br(E) — - ()] L, o8)
Psa(t) = A(t) { T (t)e™ Y — 17 (t)e 1] C () sin® [Br(t) + o ()] Y,

H/—/H/—’H/—’H/—/

Pss(t) = A(t) { 1 ()™ + I (t)e” PV — IP(t) sin® [Br(t) + @4 ()] f,

where we have denoted for compactness (¢,¢" = +)
A2
[£(0)e(t)|

(1) = oo )], ga) = POZED gy —arr @y = arp it ) =
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7.7.3 Limiting cases.

In the event that the conditions

1 1
o 4 . (67 )
10) Aa(t)| < 4ep(t) and ¢ < min[A(t), Ag(t)]
are satisfied for any ¢ € [0, 7], the formulas (28) reduce to the standard MSW adiabatic
solution

Paa(t)= Pas(t) = 5 [1+ J(0)] = I3(0)sin? [ 1),
: (MSW)
Pags(t)= Ppa(t) = 5 [1 = J()] + I§5(t) sin® [®y (1)],
where
~ A% A.[qr(0) + qr()] + gr(0)gr(t)
J<t) a 80(0)60(t) ’
2 o Ag o ! e () dt!
B0 = . Blt) = /O o(t)dt

Needless to say either of the above conditions or both may be violated for sufficiently high
neutrino energies and/or for thick media, resulting in radical differences between the two
solutions. These differences are of obvious interest to high-energy neutrino astrophysics.

124



It is perhaps even more instructive to examine the distinctions between the general adiabatic
solution (28) and its “classical limit”

[t odt ] )
Paalt=exp |~ [ 5l. Paslt) =0,
L 0 Aa(t)_ \ (A :0)

B t dt/
Pss(t)= exp —/ ., Pga(t) =0,
55(1) el 5o (t)

/

which takes place either in the absence of mixing or for m$ = m3.

Note:

Considering that Q2 oc Ay, the classical limit is the exact solution to the master equation (for
Ag = 0). Therefore it can be derived directly from Eq. (23). To make certain that the
adiabatic solution has correct classical limit, the following relations are useful:

lim e(t) = (Cr lq(t) — A

As;—0
and |
li H? = = +1
Aiglo\vi( ) 5 (CCr 1),
where

Cr = sign[qr(t) — Acl.
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In this simple case, the adiabatic approximation becomes exact and thus free from the
above-mentioned conceptual difficulties. For definiteness sake we assume A, < Az (and thus
qr < 0) from here. The opposite case can be considered in a similar way. Let's denote

o1/ 1N /1 1
el (e S R (Rl
12 (AQ+A5) 2 (Aa 15

ol ata-AN € (epta
+ 7y £2, + g2
R I

2
Ir — Ac
R '

2 2
Ep T €7

7

L

 |eg]

and & =

As is easy to see,

b ) Ie i sign(ar = Ad) =+,
Iy if sign(gn—Ad) = —C,

I Ay
I_:I+ZVI+I—:§:'_

€

and sign(yp) = —C.
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By applying the above identities, the neutrino oscillation probabilities can be written as

r D
2 t
Paa(t): (I+€_t/2A+ —|_I_€_t/2A_) _12€—t//1 SiﬂQ (Trf i |90|)7
2 t
Pggs(t)= (I_e_t/2A+ -+ I+e_t/2A—) — [?e /4 gin? (% — |go|),
1, —t/2A —t/2A 2 2 —t/A . 2 (T
Pog(t)= Ppal(t) = ZI (e -~ —e +) + I“e sin” | — ).
- J

The difference between the survival probabilities for v, and vz is

Paa(t) - Pﬁﬁ(t)

2mt
+12etA sin ¢ sin <i>

Q“Re(

q_Ac
E

> (e—t/QA B e—t/2A+)

L
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7.8.1 Case |q| = |Agl.

Let's examine the case when A, and A_ are vastly different in magnitude. This will be true
when Ag > A, and the factor £ is not too small. The second condition holds if ¢ is away
from the MSW resonance value A, and the following dimensionless parameter

Am? \ (100 GeV
o= 22 10,033 x sin 26 (LQ) (&> (E)
4] 1073 eV Ey q|

is sufficiently small. In fact we assume |3¢| < 1 and impose no specific restriction for the ratio
qr/qr- This spans several possibilities:

* small Am?,

* small mixing angle,

* high energy,

* high matter density.

The last two possibilities are of special interest because the inequality || < 1 may be fulfilled
for a wide range of the mixing parameters Am? and 6 by changing E, and/or p. In other
words, this condition is by no means artificial or too restrictive.
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After elementary while a bit tedious calculations we obtain

521—%%2+0(%3), I? =5+ 0 (),
Iy =140 (), I—:i%z+0(%3);
s? 4
A = 2‘/1@7 A—l— ~ (1+ _> Aa ~ Aom A~ (—2) Aa > Aa.
4 »

Due to the wide spread among the length/time scales A4, A and L as well as among the
amplitudes I+ and I, the regimes of neutrino oscillations are quite diverse for different ranges

of variable ¢.

With reference to Figures in pp. 130-133, one can see a regular gradation from slow (for
t S A,) to very fast (for t 2 A,,) neutrino oscillations followed by the asymptotic

nonoscillatory behavior:
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Survival and transition probabilities for v, <+ v oscillations (E, = 250 GeV, p = 1 g/cm?).
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The mechanism under discussion may be released in the Thorne-Zytkow objects (TZO) — binaries
with a neutron star submerged into a red supergiant core. Figure shows an artistic view of how a

TZO could be formed.

[See, e.g., URLs: ( http://astrofishki.net /universe/hv-2112-neveroyatnyj-obekt-torna-zhitkov/ ) and
( http:/ /www.decifrandoastronomia.com.br/2017 /01 /uma-estrela-dentro-de-outra-conheca-hv.html).]

The very bright red star HV 2112 in the Small Magellanic Cloud (see next slide) could be a massive
supergiant-like star with a degenerate neutron core (TZO). With its luminosity of over 10° L), it

could also be a super asymptotic giant branch star (SAGB), a star with an oxygen/neon core
supported by electron degeneracy and undergoing thermal pulses with third dredge up.
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Both TZO and SAGB stars are expected to be rare. Calculations performed by Ch. A. Tout et al. @
indicate that HV 2112 is likely a genuine TZO. But a much more likely explanation is that HV 2112 is
an intermediate mass (~ 5My) AGB star; a new TZO candidate (HV 11417) is recently suggested.”

aCh. A. Tout, A. N. Zytkow, R. P. Church, & H. H. B. Lau, “HV 2112, a Thorne—Zytkow object or a super
asymptotic giant branch star”, Mon. Not. Roy. Astron. Soc. 445 (2014) L36-L40, arXiv:1406.6064 [astro-ph.HE].

bE. R. Beasor, B. Davies, |. Cabrera-Ziri, & G. Hurst , “A critical re-evaluation of the Thorne—Zytkow object
candidate HV 2112", arXiv:1806.07399 [astro-ph.SR].

135



7.8.2 Degenerate case.

The consideration must be completed for the case of degeneracy. Due to the condition
qr < 0, the density and composition of the “degenerate environment” are fine-tuned in such a
way that

q = q_g = AC —i‘AS|.

The simplest way is in coming back to the master equation. Indeed, in the limit of ¢ = ¢_¢,

the Hamiltonian reduces to
—1
H = |A,] <C C) = |As| he.

(4

Considering that h? = 0, we promptly arrive at the solution of ME:
¢

~

S(t) =1 — it|Ay| he

and thus

s

Poa(t) = (1 — |Ag|t)* e 4,
Pss(t) = (1 + |As[ 1) e t/4,
Pop(t) = Paa(t) = (Ast)? e /4.

. J
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Since 1/Ag =1/A, — 4|As|, the necessary condition for the total degeneration is
YRINES

and thus
1/A=1/A, —2|A4| > 2|Ag].
The equality only occurs when v is sterile.

The degenerate solution must be compared with the standard MSW solution

Pon(t) = Pus(t) = % 1+ cos (2A,1)],

Pas(t) = Paat) = 5 [1 — cos (24,1)]

(MSW)

and with the classical penetration coefficient

exp (—t/Ay)

(with 1/A, numerically equal to 4 |A;|) relevant to the transport of unmixed active neutrinos

through the same environment.
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Survival and transition probabilities for v, <+ v, oscillations in the case of degeneracy (¢ = g—¢). The
standard MSW probabilities (dotted and dash-dotted curves) together with the penetration

coefficient for unmixed v, (dashed curve) are also shown.
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We have considered, on the basis of the MSW evolution equation with complex indices of
refraction, the conjoint effects of neutrino mixing, refraction and absorption on high-energy
neutrino propagation through matter. The adiabatic solution with correct asymptotics in the
standard MSW and classical limits has been derived. In the general case the adiabatic
behavior is very different from the conventional limiting cases.

A noteworthy example is given by the active-to-sterile neutrino mixing. It has been
demonstrated that, under proper conditions, the survival probability of active neutrinos
propagating through a very thick medium of constant density may become many orders of
magnitude larger than it would be in the absence of mixing. The quantitative characteristics
of this phenomenon are highly responsive to changes in density and composition of the
medium as well as to neutrino energy and mixing parameters.

Considering a great variety of latent astrophysical sources of high-energy neutrinos, the effect
may open a new window for observational neutrino astrophysics.
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