Cosmology and Particle Physics

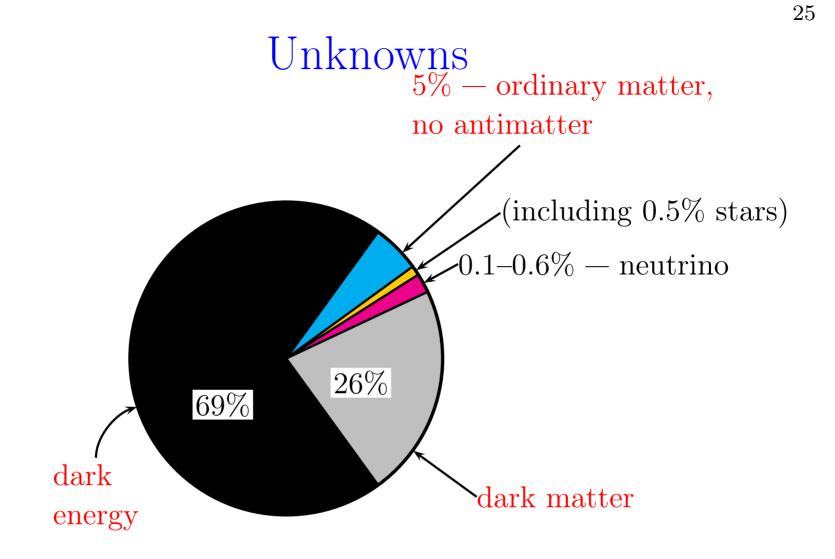
V.A. Rubakov

Institute for Nuclear Research of the Russian Academy of Sciences

Department of Particle Physics and Cosmology Physics Faculty M.V. Lomonosov Moscow State University

Outline of Lecture 2

- Dark matter: evidence
- Cold and warm dark matter
- Candidates



Dark matter

 Astrophysical evidence: measurements of gravitational potentials in galaxies and clusters of galaxies

• Velocity curves of galaxies

Fig.

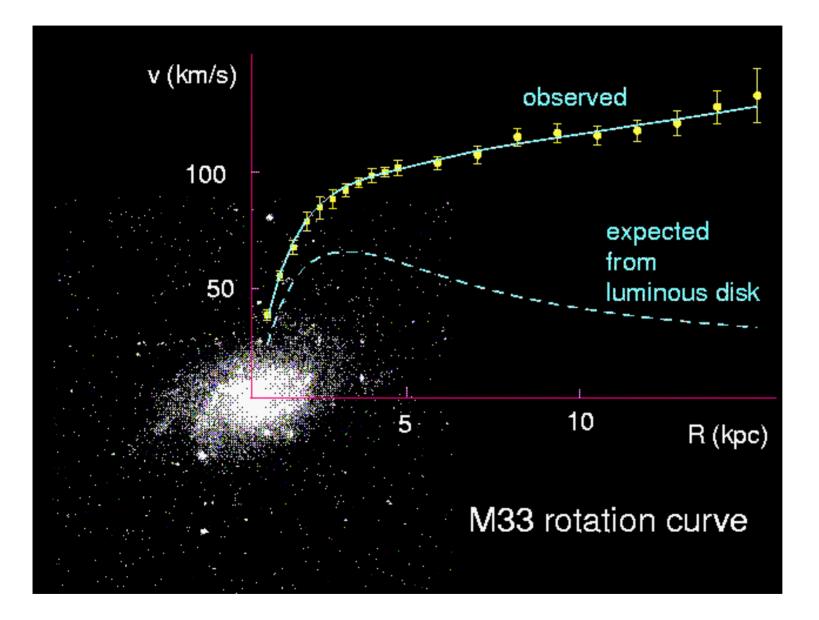
Velocities of galaxies in clusters

Original Zwicky's argument, 1930's

$$v^2 = G \frac{M(r)}{r}$$

- Temperature of gas in X-ray clusters of galaxies
- Gravitational lensing of clusters
- Etc.

Rotation curves



Outcome

$$\Omega_M \equiv \frac{\rho_M}{\rho_c} = 0.2 - 0.3$$

Assuming mass-to-light ratio everywhere the same as in clusters NB: only 10 % of galaxies gather in clusters

Nucleosynthesis, CMB:

$$\Omega_B = 0.05$$

The rest is non-baryonic, $\Omega_{DM} \approx 0.26$.

Physical parameter: mass-to-entropy ratio. Stays constant in time. Its value

$$\left(\frac{\rho_{DM}}{s}\right)_0 = \frac{\Omega_{DM}\rho_c}{s_0} = \frac{0.26 \cdot 5 \cdot 10^{-6} \text{ GeV cm}^{-3}}{3000 \text{ cm}^{-3}} \simeq 4 \cdot 10^{-10} \text{ GeV}$$

Both Ω_{DM} and Ω_B are determined with good precision from CMB anisotropies.

Baryons and DM: standard ruler - BAO

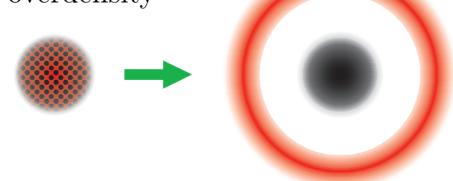
Sound speed in baryon-photon plasma before recombination $\sim 1/\sqrt{3}$; zero after recombination. Baryon perturbations freeze in at recombination. Standard ruler: sound horizon at recombination $r_s(t_r) = \int_0^{t_r} v_s \frac{dt}{a(t)}$ Then increases due to expansion of Universe: $r_s(t) = r_s(t_r) \frac{a(t)}{a(t_r)}$ Present size 150 Mpc = 450 mln. light years

"Baryon acoustic oscillations", BAO

A.D. Sakharov' 1965

baryons

and dark matter overdensity

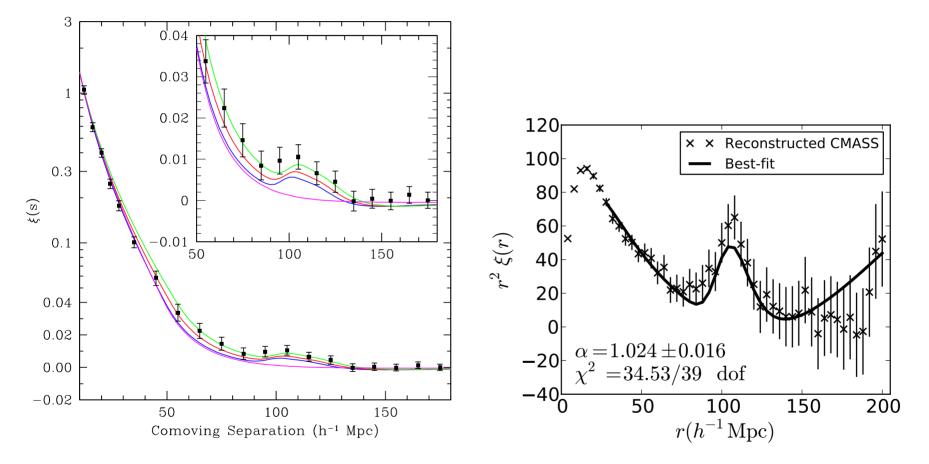


very early times

recombination epoch and later

BAO show up in distribution of galaxies

Galaxy correlation function



Very sensitive to expansion history. NB: Way to infer time-(in)dependence of dark energy.

Dark matter: growth of structure

CMB: baryon density perturbations at recombination T = 3000 K, z = 1100:

$$\delta_B \equiv \left(\frac{\delta\rho_B}{\rho_B}\right)_{z=1100} \simeq \left(\frac{\delta T}{T}\right)_{CMB} \lesssim 10^{-4}$$

In matter dominated Universe, matter perturbations grow as

 $\frac{\delta\rho}{\rho}(t) \propto a(t)$

Perturbations in baryonic matter grow after recombination only If not for dark matter,

$$\left(\frac{\delta\rho}{\rho}\right)_{today} \lesssim 1100 \times 10^{-4} \sim 0.1$$

No galaxies, no stars... Perturbations in dark matter start to grow much earlier (already at radiation-dominated stage) NB: Need dark matter particles non-relativistic early on.

Neutrinos are not considerable part of dark matter (way to set cosmological bound on neutrino mass, $m_v \lesssim 0.1$ eV for every type of neutrino)

UNKNOWN DARK MATTER PARTICLES ARE CRUCIAL FOR OUR EXISTENCE

Scandalous situation for ~ 40 years.

Cold and warm dark matter

- Cold dark matter: non-relativistic during all relevant cosmological epochs. Velocities of DM particles negligible for all purposes.
- Warm dark matter: relativistic until fairly late in the Universe. This suppresses formation of small structures.

Example: sterile neutrinos

Thermal scenario

- WDM particles decouple when relativistic, $T_f \gg m$.
- Remain relativistic until $T \sim m$. Do not feel gravitational potential before that.
- Perturbations of wavelengths shorter than horizon size at that time get smeared out \implies small size objects do not form ("free streaming")

Why can WDM be useful?

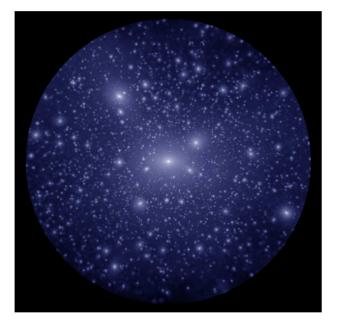
Clouds over CDM

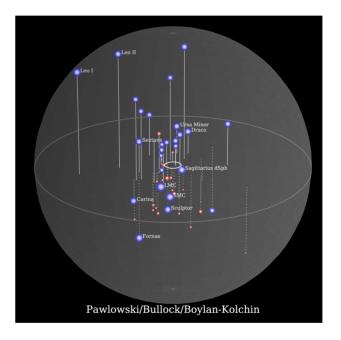
- Traditionally: "missing satellite problem"
 Numerical simulations of structure formation with CDM used to show too many dwarf galaxies:
 A few hundred small dark matter halos, satellites of a galaxy like ours but only about a dozen observed until recently. Fig.
 - No longer so serious problem:
 - Many dwarf satellites of Milky Way discovered recently: SDSS, DES, Subaru: about 50 satellites by now; expected about 100 with full sky coverage.
 - Effects of baryons (star bursts, etc.): only heavy halos $(M > 10^9 M_{\odot})$ host visible dwarf galaxies.
- "Cusp problem": CDM predicts cusps in galactic centers that
 are not observed.

Not serious worry yet, but what if small scales are suppressed?

CDM simulations

Observations





Bullock, Boylan-Kolchin' 17 250 kpc around Milky Way

• Horizon size at $T \sim m$

$$l(T) \simeq H^{-1}(T \sim m)$$

Friedmann equation at radiation domination:

$$H^{2} = \frac{8\pi}{3M_{Pl}^{2}} \#g_{*}T^{4} \implies H(T) = \frac{T^{2}}{M_{Pl}^{*}}$$

with $M_{Pl}^* = M_{Pl}/(1.66\sqrt{g_*}) \sim 5 \cdot 10^{18}$ GeV at $T \lesssim 1$ MeV

• Horizon size at $T \sim m$

$$l_H(T) = H^{-1}(T \sim m) \sim \frac{M_{Pl}^*}{T^2} = \frac{M_{Pl}^*}{m^2}$$

Present size of this region

$$l_c = \frac{T}{T_0} l(T) = \frac{M_{Pl}}{mT_0}$$

(modulo g_* factors).

Objects of initial comoving size smaller than l_c are less abundant

 \checkmark Size of region that collapsed into dwarf galaxy $M\sim 10^8 M_\odot$ $l_{dwarf}\sim 100~{\rm kpc}\sim 3\cdot 10^{23}~{\rm cm}$ Require

$$l_c \simeq rac{M_{Pl}}{mT_0} \sim l_{dwarf}$$

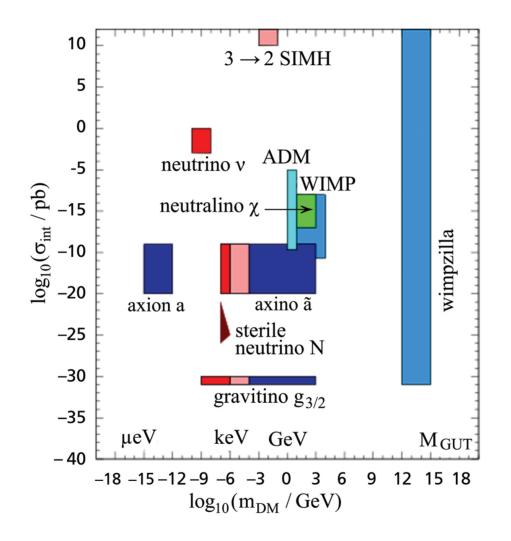
 \implies obtain mass of DM particle

$$m \sim rac{M_{Pl}}{T_0 l_{dwarf}} \sim 3 ~{
m keV}$$

$$(M_{Pl} = 10^{19} \text{ GeV}, T_0^{-1} = 0.1 \text{ cm}).$$

- Particles of masses in m = a few keV range are warm dark matter candidates (assuming they had thermal velocities). Masses m < 1 keV ruled out.
- Similar estimates valid for non-thermal relics, if their momenta at decoupling are of order T.

Canidates for Dark Matter particles are numerous



WIMPs

Simple but very suggestive scenario

- \checkmark Assume there is a new heavy stable particle X
 - Interacts with SM particles via pair annihilation (and crossing processes)

$X + X \leftrightarrow q\bar{q}$, etc

- Parameters: mass M_X ; annihilation cross section at non-relativistic velocity σ
- Calculate present mass density

Outcome: mass to entropy ratio

$$\frac{M_X n_X}{s} = \# \frac{\ln(M_X M_{Pl}^* \langle \sigma v \rangle)}{\langle \sigma v \rangle \sqrt{g_*(T_f)} M_{Pl}}; \qquad \# = \frac{3\sqrt{5}}{\sqrt{\pi}}$$

• Correct value, mass-to-entropy= $4 \cdot 10^{-10}$ GeV, for

$$\sigma_0 \equiv \langle \sigma v \rangle = (1 \div 2) \cdot 10^{-36} \text{ cm}^2 = (1 \div 2) \text{ pb}$$

• Weak scale cross section. WIMP miracle:
gravitational physics and EW scale physics combine into
mass-to-entropy
$$\simeq \frac{1}{M_{Pl}} \left(\frac{\text{TeV}}{\alpha_W}\right)^2 \simeq 10^{-10} \text{ GeV}$$

• Mass M_X should not be much higher than 1 TeV

Weakly interacting massive particles, WIMPs.

Cold dark matter candidates SUSY: LSP neutralinos, $X = \chi$

But situation is rather tense: annihilation cross section is often too low; WIMPs overproduced.

WIMP search: direct

Difficulties in direct search for WIMPs

■ Recoil energy of nucleus A (NB: suppressed for $M_X \ll M_A$)

$$E_{rec} \le \frac{2M_A v_X^2}{(1 + M_A/M_X)^2} = \frac{2M_X^2 v_X^2}{M_A (1 + M_X/M_A)^2} \sim 10 \div 100 \text{ keV}$$

 $v_X \simeq 200 \text{ km/s} = \text{WIMP}$ velocity in our Galaxy.

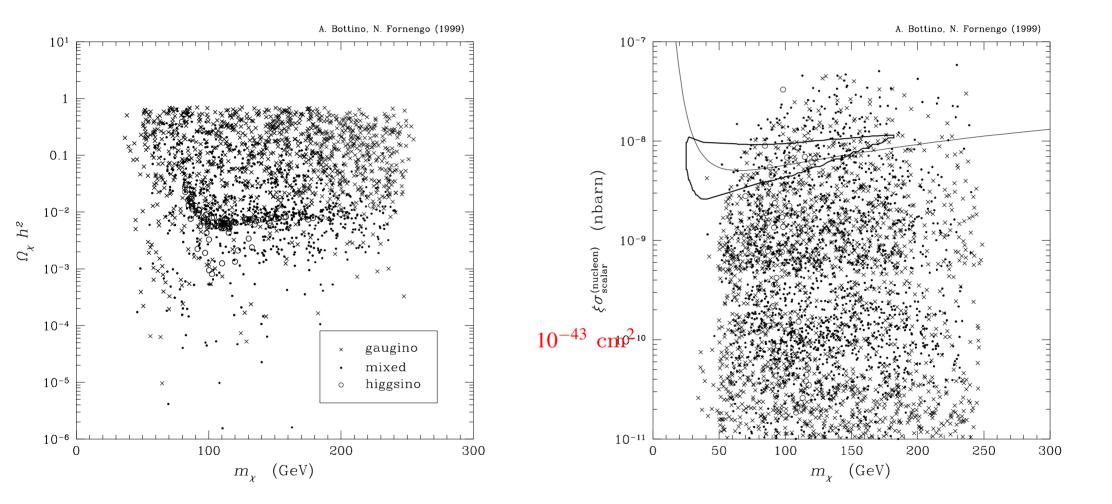
P Rate in detector of mass M_{det} (spin-independent)

$$\Gamma \simeq v_X \frac{\rho_{loc}}{M_X} (\sigma_N A^2) \frac{6 \cdot 10^{23}}{A} \frac{M_{det}}{g}$$
$$\simeq 0.2 \frac{\text{events}}{\text{yr}} \cdot \frac{100 \text{ GeV}}{M_X} \frac{A}{100} \frac{M_{det}}{\text{tonn}} \frac{\sigma_N}{10^{-45} \text{ cm}^2}$$

 $ho_{loc} \simeq 0.3 \ {
m GeV/cm^3} = {
m local \ DM \ mass \ density}.$

SUSY WIMPs 20 years ago

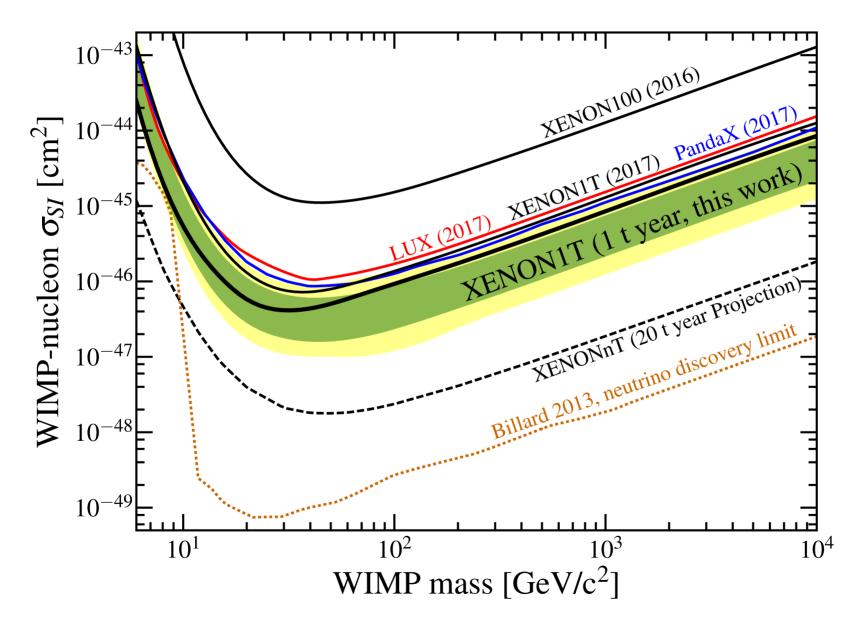
Direct detection (spin independent) expectations and limits



Bottino, Fornengo' 1999

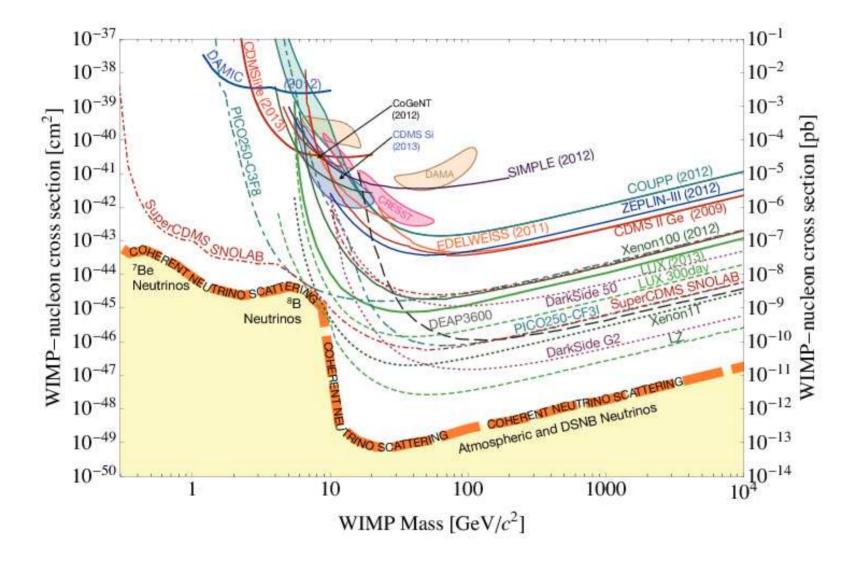
Xenon-1T, PandaX, LUX

Spin-independent, direct detection



Direct detection limits today and tomorrow

Roszkowski, Sessolo, Trojanowski 1707.06277



Many other possibilities

Example: Higgs portal

Just to have a WIMP, introduce scalar singlet **S**.

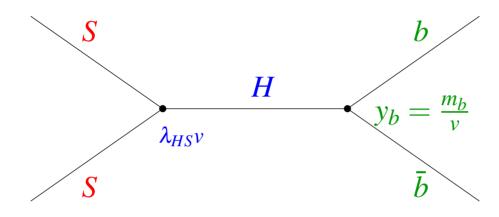
Renormalizable interaction with Higgs only. Impose symmetry $S \rightarrow -S \implies$ stable S.

$$L_{S} = \frac{1}{2} (\partial_{\mu} S)^{2} - \left(\frac{\mu_{s}^{2}}{2} S^{2} + \frac{\lambda_{SH}}{4} S^{2} H^{\dagger} H + \frac{\lambda_{S}}{4} S^{4}\right)$$

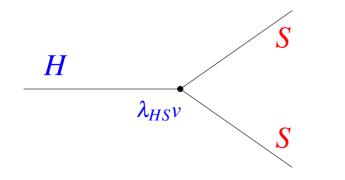
In vacuo $H = v/\sqrt{2} + h/\sqrt{2}$: vertices

$$\frac{\lambda_{SH}}{4}vhS^2 + \frac{\lambda_{SH}}{8}h^2S^2$$

Fairly popular before the LHC Main annihilation channel $SS \rightarrow b\bar{b}$.



 $\langle \sigma v \rangle = 1 \text{ pb} \Longrightarrow \text{quite large } \lambda_{SH} \Longrightarrow$ Signature: invisible Higgs decay $H \rightarrow SS$.



Excersize: calculate $\langle \sigma v \rangle$ and $\Gamma(H \rightarrow SS)$

- Degeneracy: m_s just below m_H/2.
 Pole enhanced $\langle \sigma v \rangle \Longrightarrow$ not so large $\lambda_{SH} \Longrightarrow$ + threshold suppression of invisible Higgs decay $H \rightarrow SS \Longrightarrow$ viable and interesting (but fine tuned).
 Signature: invisible Higgs decay.

Main annihilation channels $SS \rightarrow WW, ZZ, HH$.

Interesting for direct dark matter detection experiments and LHC, $m_s > 1$ TeV because of existing constraints.

Signature $pp \rightarrow H^* + \text{jet} \rightarrow \text{jet} + SS$;

jets + missing E_T

Indirect searches

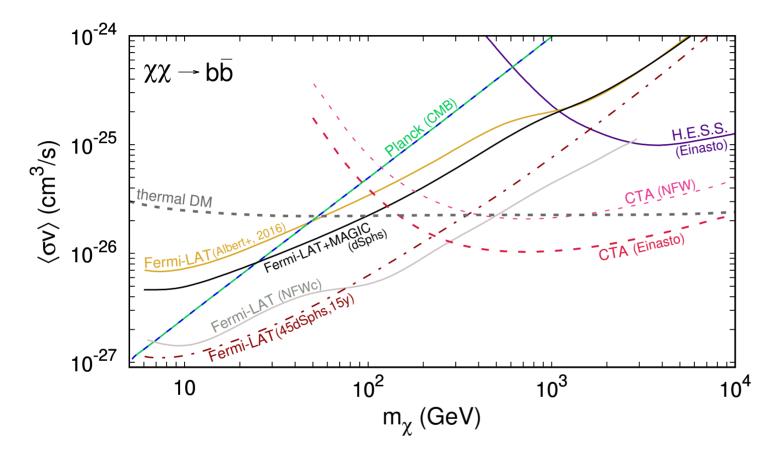
● DM annihilation in centers of Sun, Earth

 $X + \overline{X} \to \pi^{\pm} , K^{\pm} + \ldots \to v , \overline{v} + \ldots$

- High Baksan Underground Scintillation Telescope energy ⇒ ● Super-K neutrinos ● IceCube ● Baikal GVD
 - DM annihilation in space

 e^+ , \bar{p} in cosmic rays (PAMELA, AMS), annihilation γ 's (Fermi-LAT, MAGIC, HESS, CTA ...).

Limits from annihilation γ 's



Current limits, solid Projected limits, dashed NFW, Einasto: dark matter profiles in galaxies Thermal DM: WIMP annihilation cross section, assuming domination of $X \rightarrow b\bar{b}$

TeV SCALE PHYSICS MAY WELL BE RESPONSIBLE FOR GENERATION OF DARK MATTER

Is this guaranteed?

By no means. Other good DM candidates: axion, sterile neutrino, gravitino

Plus a lot of exotica...

Sterile neutrinos: WDM candidates

- Needed to give masses to ordinary neutrinos
- One sterile neutrino species can be light. Seemingly, nothing wrong with $m_{v_s} = a$ few keV
- Mix with ordinary neutrinos (say, v_e), mixing angle θ_s . In vacuum, and in Universe below $T \sim 200$ MeV

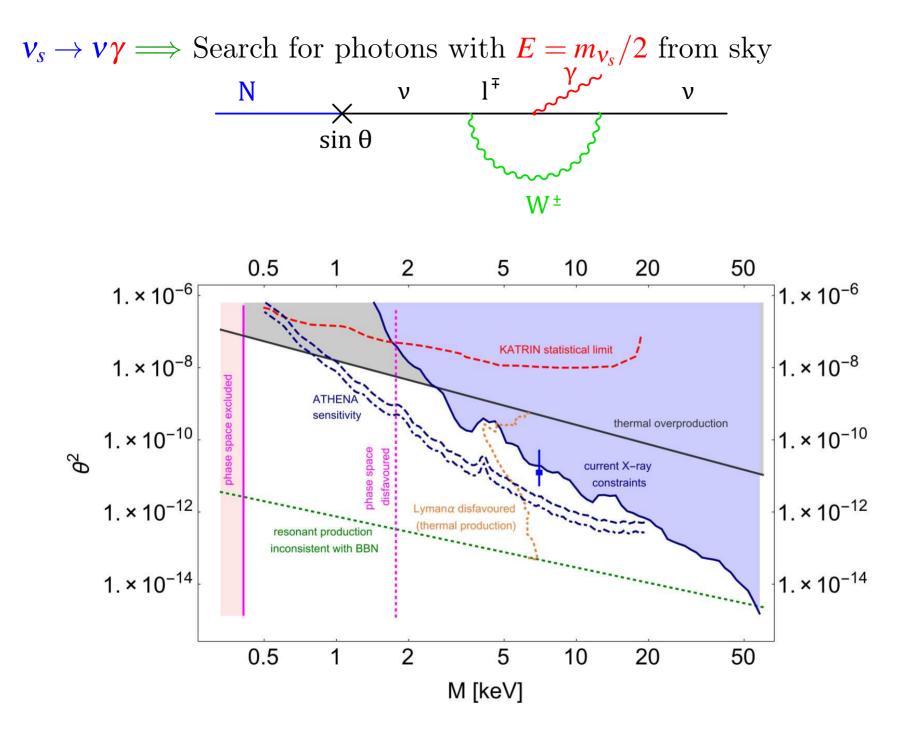
$$P_{\nu_e \to \nu_s} = \sin^2 2\theta_s \cdot \sin^2 \left(\frac{\Delta m^2 t}{E}\right)$$

Rapid oscillations, $P_{v_e \to v_s} = \frac{1}{2} \sin^2 2\theta_s$. Process starts anew after collision of v_e with another particle in cosmic plasma.

Outcome:

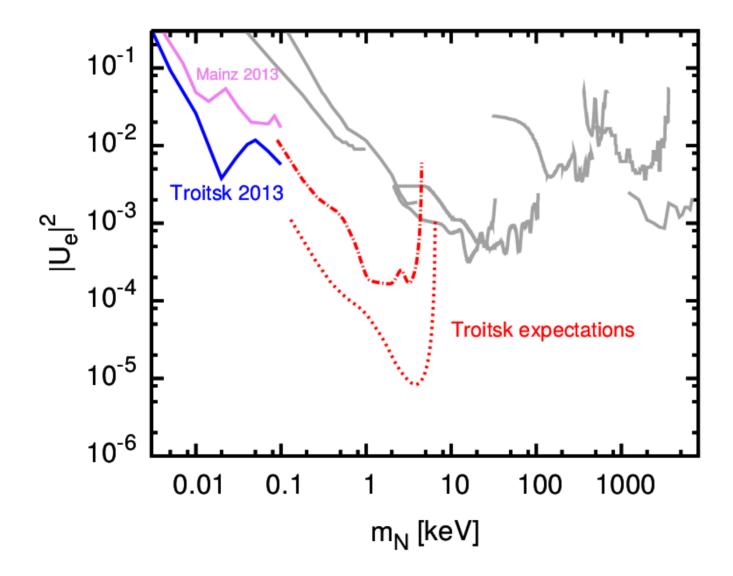
$$\Omega_s \simeq 0.2 \cdot \left(\frac{\sin 2\theta_s}{10^{-4}}\right)^2 \cdot \left(\frac{m_{V_s}}{1 \text{ keV}}\right)$$

Long lifetime: $\tau_{v_s} \gg 10^{10}$ yrs for $m_{v_s} = 3 - 10$ keV, $\sin 2\theta_s = 10^{-4} - 10^{-5}$



Straightforward version of scenario ruled out But more contrived are not

Laboratory search: long way to go



Axions

Motivation: solution of strong CP problem What's the problem?

To make long story short: in general, QCD Lagrangian involves $\pmb{\theta}\text{-term}:$

$$rac{lpha_s}{16\pi} \, heta_0 \, arepsilon^{\mu
u\lambda
ho} G^a_{\mu
u} G^a_{\lambda
ho}$$

and θ_0 violates CP !

Neutron edm $d_n < 3 \cdot 10^{-26} e \cdot cm \Longrightarrow$

 $\theta_0 \lesssim 10^{-10}$

Strong CP problem. Fine tuning? Mechanism that ensures $\theta_0 = 0$

Peccei–Quinn: promote $\boldsymbol{\theta}$ to a field.

$$L_{\theta} = \frac{1}{2} f_{PQ}^2 (\partial_{\mu} \theta)^2 - V(\theta) , \quad V(\theta) \simeq -m_q \langle \bar{q}q \rangle \cos \theta = \frac{1}{2} m_q \langle \bar{q}q \rangle \theta^2$$

Axion field $\theta(x) = a(x)/f_{PQ}$:

$$m_a^2 \simeq \frac{m_q \langle \bar{q}q \rangle}{f_{PQ}^2} \simeq \frac{m_\pi^2 f_\pi^2}{4f_{PQ}^2} \implies m_a = 6 \cdot 10^{-6} \text{ eV} \cdot \left(\frac{10^{12} \text{ GeV}}{f_{PQ}}\right)$$

Thus, Peccei–Quinn solution to strong CP problem predicts axion with mass

$$m_a = 6 \ \mu \,\mathrm{eV} \cdot \left(\frac{10^{12} \ \mathrm{GeV}}{f_{PQ}} \right)$$

and $a\gamma\gamma$ interaction

$$C_{a\gamma\gamma} \frac{lpha}{2\pi} \frac{a(x)}{f_{PQ}} (\vec{E} \cdot \vec{H})$$

where $C_{a\gamma\gamma} \sim 1$ is model-dependent, and f_{PQ} is the only free parameter. Larger $f_{PQ} \implies$ smaller m_a , weaker interactions.

Why is this interesting for cosmology?

Axion is practically stable:

$$\Gamma(a \to \gamma \gamma) = C_{a\gamma\gamma}^2 \left(\frac{\alpha}{8\pi}\right)^2 \frac{m_a^3}{4\pi f_{PQ}^2} \quad \Longrightarrow \quad \tau_a = 10^{17} \left(\frac{\text{eV}}{m_a}\right)^5 \text{ yrs}$$

- \checkmark Interacts very weakly \implies dark matter candidate
- May never be in thermal equilibrium \implies cold dark matter if momenta are negligibly small.

Q. How can one arrange for negligibly small momenta for particles with sub-eV masses?

A. Condensates (not the only option)

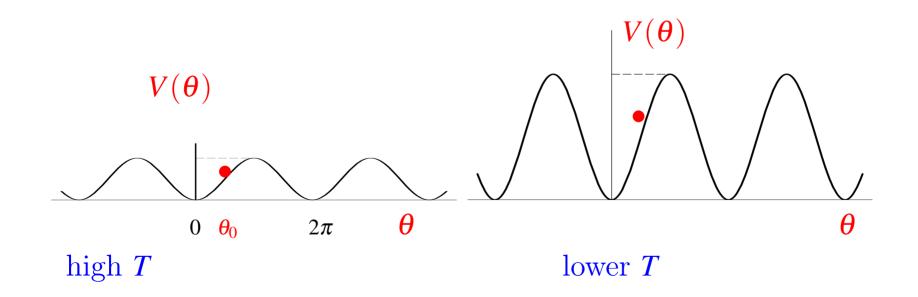
Axion production: misalignment

Recall $V(\boldsymbol{\theta}) \simeq -m_q \langle \bar{q}q \rangle \mathbf{cos} \, \boldsymbol{\theta}$

Early Universe, high $T: \langle \bar{q}q \rangle = 0 \implies V(\theta) = 0$.

No preferred value of $\theta \implies$ Initial condition θ_0 anywhere between $-\pi$ and π .

At QCD epoch $(T \sim 200 \text{ MeV})$ potential $V(\theta)$ builds up. θ starts to roll down. Homogeneous scalar field = collection of quanta with zero spatial momenta.



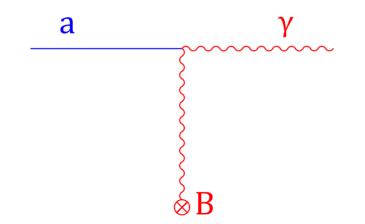
There are other non-thermal production mechanisms.

Outcome: axions of mass $m_a = 1 - 30 \ \mu \text{eV}$ are good candidates for cold dark matter.

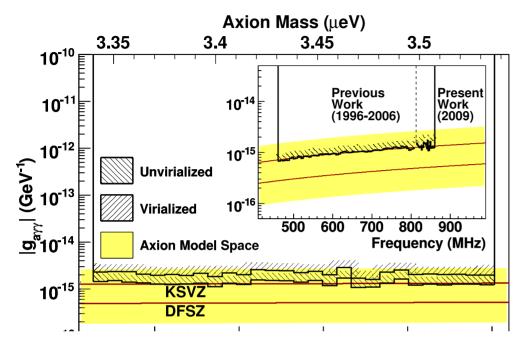
Search

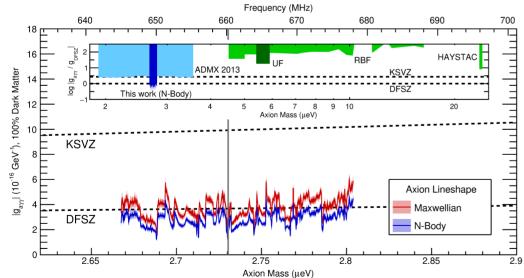
$$a\gamma\gamma$$
 interaction $C_{a\gamma\gamma}\frac{\alpha}{2\pi}\frac{a(x)}{f_{PQ}}(\vec{E}\cdot\vec{H})$

Conversion of DM axion into photon in magnetic field in a resonant cavity. $10^{-6} \text{ eV}/2\pi = 240 \text{ MHz}.$



Need high Q resonator to collect photons, narrow bandwidth, go small steps in m_a . Long story.





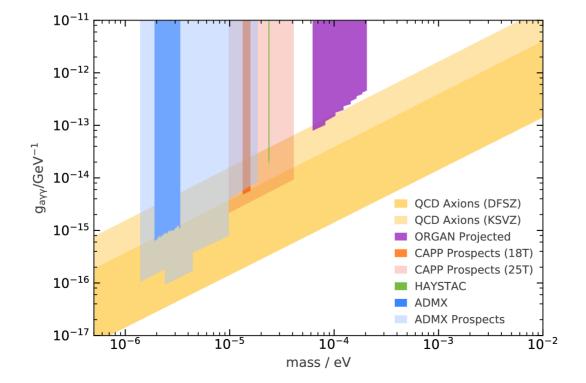
ADMX, PRL '2010

ADMX, PRL '2018

New efforts in axion searches:

- CAPP, axion-photon conversion in magnetic field, $m_a = (3 \cdot 10^{-6} - 10^{-4}) \text{ eV};$
- MADMAX, axion-photon conversion at boundaries of dielectric discs in magnetic field $m_a \gtrsim 4 \cdot 10^{-5}$ eV
- CASPEr, time-varying EDM of nuclei in oscillating axion background \implies spin precession, $m_a \lesssim 10^{-9}$ eV

All aim at dark matter QCD axions



Axion-like particles, ALPs <u>Axions:</u> $m_a f_a = (m_\pi f_\pi)/2 = 6 \cdot 10^{-3} \text{ GeV}^2$

<u>ALPs:</u> No relationship between m_a and f_a .

Possible origin: pseudo-Nambu–Goldstone bosons of approximate global symmetry

Coupling to photons

$$C_{a\gamma\gamma}rac{lpha}{2\pi}a(x)(ec{E}\cdotec{H})$$

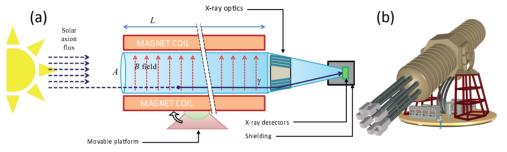
Coupling to SM fermions f through Higgs:

 $C_{aff} a H \bar{f} f \implies C_{aff} \langle H \rangle a \bar{f} f$

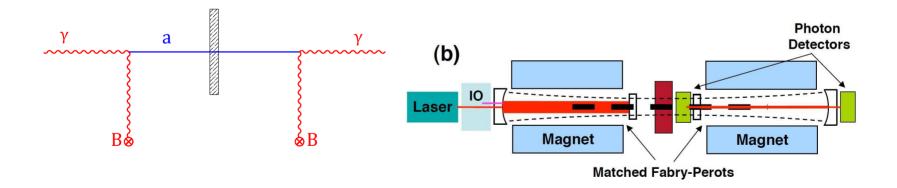
Large $f_a \implies \text{small } C_{a\gamma\gamma}, C_{aff} \propto f_a^{-1}$.

ALP searches, present and future

- Haloscopes ALPs from dark matter halo: ADMX, CAPP, MADMAX, CASPEr
- Helioscopes ALPs from the Sun: CAST, IAXO, TASTE

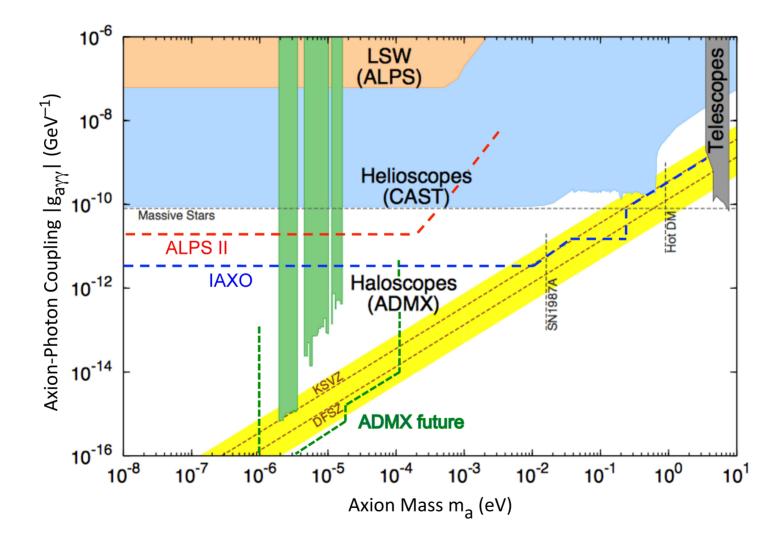


Light shining through wall, ALPS I, ALPS II



Beam-dump searches: SHiP

Still a lot of parameter space to explore



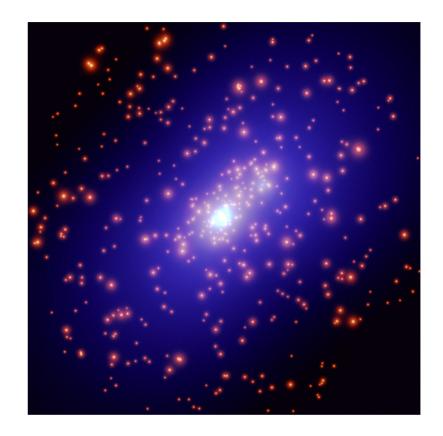
Dark matter summary

- No strong preference of one candidate over others.
 Wide program of searches with very diverse techniques.
- Astrophysics will hopefully give more hints
 CDM vs WDM

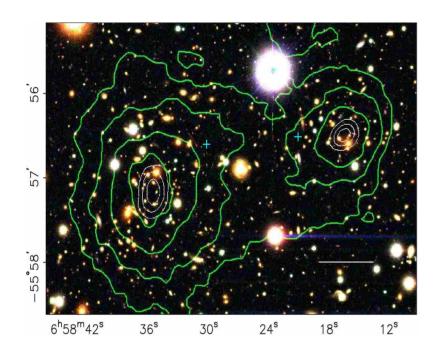
Bose stars, axion clusters,.....

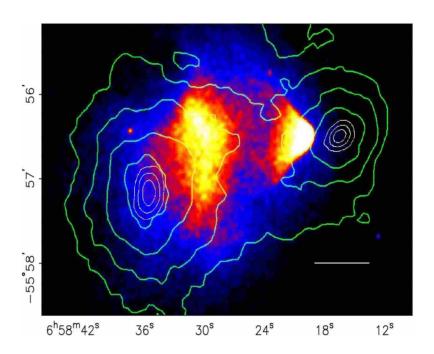
Primordial black holes is yet another option (not yet ruled out!)
 Interesting times ahead

Gravitational lensing



Bullet cluster





Ω_{DM} from CMB angular spectrum.

Before recombination: density perturbation due to baryons and dark matter (Fourier):

$$\frac{\delta\rho}{\rho}(\vec{k},t) \equiv \delta(\vec{k},t) = \delta_B(\vec{k},t) + \delta_{DM}(\vec{k},t)$$

 \vec{k} = comoving momentum, constant in time; $\vec{p} = \vec{k}/a(t)$ = physical momentum, gets redshifted.

 δ_B : sound wave in baryon-electron-photon plasma,

$$\delta_B(\vec{k},t) = A(\vec{k}) \cos\left(\int_0^t v_s \frac{k}{a(t)} dt\right)$$

 $v_s = \text{sound speed } (\approx 1/\sqrt{3}).$

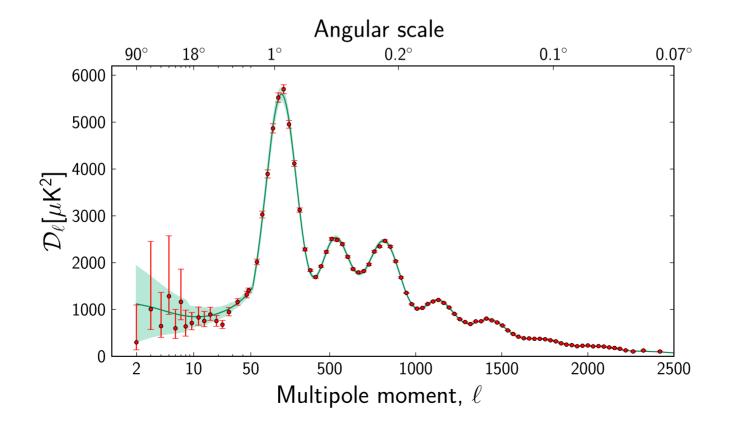
 δ_{DM} nearly time-independent.

At recombination

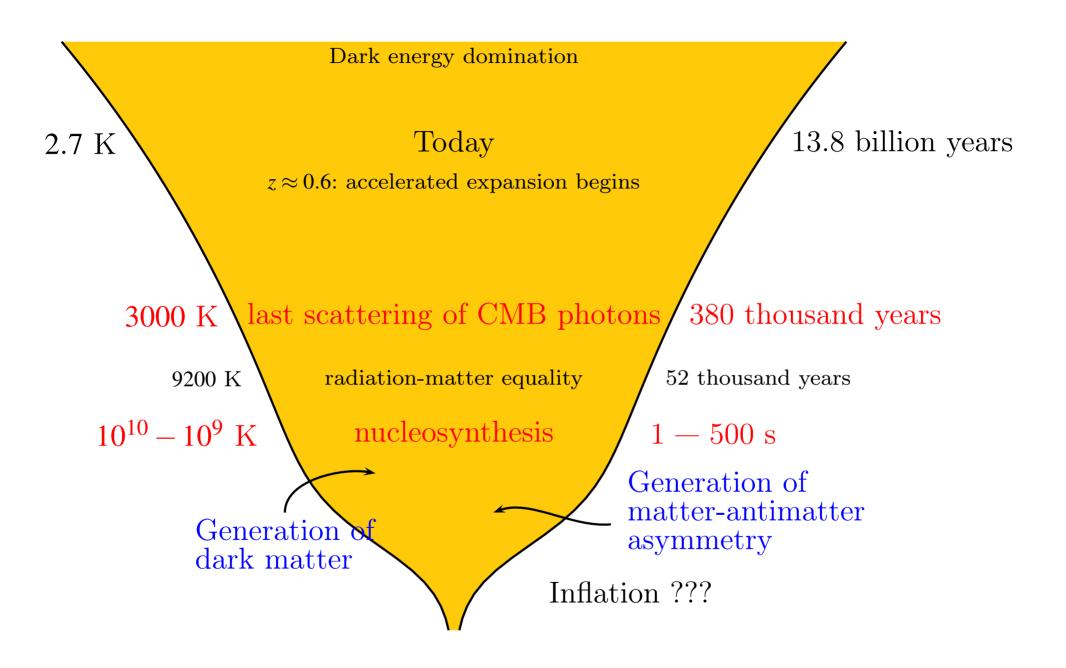
$$\delta(\vec{k},t_r) = A(\vec{k})\cos\left(\int_0^{t_r} v_s \frac{k}{a(t)} dt\right) + \delta_{DM}(\vec{k},t_r)$$

Part that oscillates in k (due to baryon-photon plasma) + smooth part (due to dark matter)

Translates into oscillations + smooth part of $\delta T/T$ as function of multipole number *l*. Strong sensitivity to both Ω_B and Ω_{DM} .



32



Simplified calculation of WIMP mass density

- **•** Expansion at radiation domination
 - Friedmann equation:

$$\left(\frac{\dot{a}}{a}\right)^2 \equiv H^2 = \frac{8\pi}{3M_{Pl}^2}\rho$$

40

$$(M_{Pl} = G^{-1/2} = 10^{19} \text{ GeV})$$

Radiation energy density: Stefan–Boltzmann

$$\rho = \frac{\pi^2}{30} g_* T^4$$

 $g_*:$ number of relativistic degrees of freedom (about 100 in SM at $T\sim 100$ GeV). Hence

$$H(T) = \frac{T^2}{M_{Pl}^*}, \qquad M_{Pl}^* = \frac{M_{Pl}}{1.66\sqrt{g_*}}$$

Number density of X-particles in chemical equilibrium at $T < M_X$: Maxwell–Boltzmann with chem. potential $\mu = 0$

$$n_X = g_X \int \frac{d^3 p}{(2\pi)^3} e^{-\frac{\sqrt{M_X^2 + p^2}}{T}} = g_X \left(\frac{M_X T}{2\pi}\right)^{3/2} e^{-\frac{M_X}{T}}$$

■ Mean free time wrt annihilation: travel distance $\tau_{ann}v$, meet one X particle to annihilate with in volume $\sigma \tau_{ann}v \implies$

$$\sigma \tau_{ann} v n_X = 1 \implies \tau_{ann} = \frac{1}{n_X \langle \sigma v \rangle}$$

• Freeze-out: $\tau_{ann}^{-1}(T_f) \sim H(T_f) \implies n_X(T_f) \langle \sigma v \rangle \sim T_f^2 / M_{Pl}^* \Longrightarrow$

$$T_f \simeq \frac{M_X}{\ln(M_X M_{Pl}^* \langle \sigma v \rangle)}$$

NB: large log $\iff T_f \sim M_X/30$

Define $\langle \sigma v \rangle \equiv \sigma_0$ (constant for *s*-wave annihilation)

Number density at freeze-out

$$n_X(T_f) = \frac{T_f^2}{\sigma_0 M_{Pl}^*}$$

Number-to-entropy ratio at freeze-out and later on

$$\frac{n_X(T_f)}{s(T_f)} = \# \frac{n_X(T_f)}{g_*T_f^3} = \# \frac{\ln(M_X M_{Pl}^* \sigma_0)}{M_X \sigma_0 g_* M_{Pl}^*}$$

where
$$\# = 45/(2\pi^2)$$
.
Mass-to-enropy ratio

$$\frac{M_X n_X}{s} = \# \frac{\ln(M_X M_{Pl}^* \sigma_0)}{\sigma_0 \sqrt{g_*(T_f)} M_{Pl}}$$

Most relevant parameter: annihilation cross section $\sigma_0 \equiv \langle \sigma v \rangle$ at freeze-out