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Abstract
We develop Schwinger-Keldysh in-in formalism for generic nonequilibrium dynamical sys-

tems with mixed initial states. We construct the generating functional of in-in Green’s func-
tions and expectation values for a generic density matrix of the Gaussian type and show that
the requirement of particle interpretation selects a distinguished set of positive/negative fre-
quency basis functions of the wave operator of the theory, which is determined by the density
matrix parameters. Then we consider a special case of the density matrix determined by the Eu-
clidean path integral of the theory, and show that its Wightman Green’s function satisfy Kubo-
Martin-Schwinger quasiperiodicity conditions which hold despite the nonequilibrium nature of
the physical setup.

Can correlation functions of nonequillibrium field theory
obey Kubo-Martin-Schwinger condition

⟨ϕ̂(t− iβ)ϕ̂(t′)⟩β = ⟨ϕ(t′)ϕ(t)⟩β ?

Gaussian field theory
We begin with most general Gaussian field theory

S[ϕ] =
1

2

∫
dt
(
ϕ̇TAϕ̇ + ϕ̇TBϕ + ϕTBT ϕ̇ + ϕTCϕ

)
where ϕI are fields, I = (x, i) is multi-index, and A = AIJ , B = BIJ , C = CIJ are
time-dependent operators.

E.o.m. are given by wave operator

F = − d

dt
A
d

dt
− d

dt
B +BT d

dt
+ C,

obtained from Hessian Fδ(t− t′) = δ2S[ϕ]/δϕ(t) δϕ(t′).
Density matrix, defining the state of the system is given in coordinate space

⟨φ+| ρ̂ |φ−⟩ = ρ(φ+, φ−) and also has Gaussian form

ρ(φ) =
1

Z
exp

{
−1

2
φTΩφ + jTφ

}
, Ω =

 R S

S∗ R∗

 j =

 j+

j−

 , (1)

where φ =
[
φ+, φ−

]T , and source j allows to incorporate non-Gaussianities to the
state.

Generating functional and Green’s functions
To examine in-in correlation functions, we calculate generating functional

Z[J1, J2] = tr
[
ÛJ1(T, 0) ρ̂ Û

†
−J2

(T, 0)
]
.

where ρ̂ is density matrix, and ÛJ(T, 0) is evolution operator with Hamiltonian mod-
ified by source term −JT (t)ϕ(t). Generating functional is calculated in path integral
formalism and reads

Z[J ] = const × exp

{
− i

2

∫ T

0
dt dt′JT(t)G(t, t′)J(t)

−
∫ T

0
dtJT(t)G(t, 0) j +

i

2
jTG(0, 0) j

}
,

where J = [J1, J2]
T . Blocks of matrix Green’s function

G(t, t′) =

GT(t, t
′) G<(t, t

′)

G>(t, t
′) GT̄(t, t

′)

 ,

contains Feynman, anti-Feynman and Wightmann Green’s functions.
Explicit form of G(t, t′) is obtained by solving boundary problem, depending on

the state, and can be expressed in terms of state-independent basis functions defining
Heisenberg field operators

ϕ(t) = v(t) â + v∗(t) â†

subject to Neumann boundary problem

Fv(t) = 0, (iW − ω)v(t)
∣∣
t=0 = 0, (iW + ω∗)v∗(t)

∣∣
t=0 = 0,

where W = A d
dt +B, and matrix ω is the free parameter. In terms of non-anomalous

and anomalous averages

ν = tr
[
ρ̂ â†â

]
, κ = tr

[
ρ̂ â â

]
,

e.g. Wightmann Green’s function reads

G>(t, t
′) = v(t) (ν + I) v†(t′) + v∗(t) ν vT (t′)

+ v(t)κ vT (t′) + v∗(t)κ v†(t′)
(2)

Now, we ask whether it is possible to choose matrix ω such that the anomalous
average κ = 0. This gives the equation on ω, whose solution reads

ω = R1/2
√

I − σ2R1/2, σ ≡ R−1/2SR−1/2. (3)

so that the blocks of G(t, t′) are significantly simplified, e.g. the second line in (2)
vanishes. Such form is well-known in the context if thermofield dynamics.

Euclidean density matrix
In the context of quantum cosmology it is natural to define the density matrix as the
Euclidean path integral, i.e. the state is dynamically described by the system itself

ρE(φ+, φ−; JE] =
1

Z
×

∫
ϕ(τ±)=φ±

Dϕ exp

{
−SE[ϕ]−

∫ τ+

τ−
dτ JE(τ )ϕ(τ )

}
,

where the Euclidean action is obtained by the Wick rotation

iS[ϕ(t)]
∣∣
t=−iτ = −SE[ϕE(τ )].

The operator coefficients of Euclidean action defined as

AE(τ ) = A(−iτ ), BE(τ ) = −iB(−iτ ), CE(τ ) = −C(−iτ ),

and should satisfy the following quasi-periodicity conditions

AE(β − τ ) = A∗
E(τ ), BE(β − τ ) = −B∗

E(τ ), CE(β − τ ) = C∗
E(τ ), (4)

for some β = τ+ − τ−, for the density matrix to be Hermitian. After functional in-
tegration Euclidean density matrix has Gaussian form (1) with R = RE, S = SE
defined by boundaty-to-boundary Euclicean Green’s function and its derivatives.

KMS condition
It is possible to extend the range of τ such that Euclidean e.o.m. become β-periodic.
In this case, according to gerenal Floquet theory, the Euclidean basis functions
u−(τ ), u+(τ ) obey monodromy relation[

u−(τ + β) u+(τ + β)
]
=
[
u−(τ ) u+(τ )

]M−− M−+

M+− M++

 (5)

Imposing Neumann boundary conditions on u−(τ ), u+(τ )

(WE − ω)u−(τ )
∣∣
τ=0 = 0, (WE + ω∗)u+(τ )

∣∣
τ=β = 0,

and demanding that off-diagonal blocks vanish M+− = M−+ = 0 we find that this
condition is fulfilled by ω exactly the same as in (3)! This, we have the following
monodromy relation

u−(t + β) = u−(τ )
ν + I

ν
, u+(t + β) = u+(t)

ν

ν + I
.

With this choice of ω both for Euclidean and Loranzian basis functions are the
analytic continuation of each other. Together with the monodromy relation for
u−(τ ), u+(τ ) this implies

v(t− iβ) = v(t)
ν + I

ν
, v∗(t− iβ) = v∗(t)

ν

ν + I
.

Using this property in (2), we obtain

G>(t− iβ, t′) = G<(t, t
′),

which is nothing but the Kubo-Martin-Schwinger condition. Hence, the KMS condi-
tion can hold even in for nonequillibrium field theories!

The conditions (4) under which KMS condition is satisfied may look rather restric-
tive. However, these are fulfilled at least for the perturbations about the cosmological
instanton solution

Σ− Σ+
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